向量空間模型

perlin噪聲

手賤去點了圖形學裡面的噪聲課程,然後一個週末就交代在這上面了,還是有些雲裡霧裡。 噪聲就是給定一個輸入變數,生成一個值在0~1範圍內的偽隨機變數的函式。在圖形學中一般是輸入一個座標得到一個範圍在0~1之間的

自然語言處理中的語言模型預訓練方法

自然語言處理中的語言模型預訓練方法 最近,在自然語言處理( NLP )領域中,使用語言模型預訓練方法在多項 NLP 任務上都獲得了不錯的提升,廣泛受到了各界的關注。就此,我將最近看的一些相關論文進行總結,

雙向預訓練語言模型BERT

Google AI Language在2018.10釋出的論文,提出一種預訓練語言模型,在十多個NLP任務中取得了SOTA的效果。 1.現有的LM 兩種使用語言模型的方法: Feature-bas

幾篇KBQA論文閱讀

七篇和KBQA多多少少有些相關的論文,有些精讀有些只是略讀。 1.《Improving Natural Language Inference Using External Knowledge in the

文章相似度計算

演算法思路 首先看個簡單的例子: 句子A: 我喜歡看電視,不喜歡看電影 句子B: 我不喜歡看電影,也不喜歡看電視 基本思路 如果兩句話的用詞越相似,它們的內容越相似。因此,可以從詞頻入手,計

1746039215.3319