1. 程式人生 > >STL源代碼剖析 容器 stl_vector.h

STL源代碼剖析 容器 stl_vector.h

之前 類型 特性 ase avi eal posit cti osi

本文為senlie原創。轉載請保留此地址:http://blog.csdn.net/zhengsenlie


vector
----------------------------------------------------------------------


描寫敘述:
1.叠代器
vector 維護的是一個連續線性空間。它的叠代器是普通指針。
能滿足 RandomAccessIterator 全部必要條件:operator*, operator->,operator++,operator--,operator+,
operator-,operator+=,operator-=,operator[]
2.數據結構
vector所採用的數據結構是線性連續空間。
叠代器 start、finish分別表示配置得來的連續空間中眼下已經被使用的範圍
叠代器 end_of_storage 指向整塊連續空間的尾端


添加新元素時。假設走過當時的容量,則容量會擴充至兩倍。
假設兩倍容量仍不足,就擴張至足夠大的容量。


擴充容量的過程為:又一次配置、元素移動、釋放原空間
所謂動態添加大小,並非在原空間之後接續新空間,由於無法保證原空間之後
尚有可供配置的空間。因此。對 vector 的不論什麽操作。一旦引起空間又一次配置,
指向原 vector 的全部叠代器就失效了。
技術分享

演示樣例:

vector<int> V;
V.insert(V.begin(), 3);
assert(V.size() == 1 && V.capacity() >= 1 && V[0] == 3);

源代碼:
#ifndef __SGI_STL_INTERNAL_VECTOR_H
#define __SGI_STL_INTERNAL_VECTOR_H


__STL_BEGIN_NAMESPACE 


#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif


template <class T, class Alloc = alloc>
class vector {
public:
  typedef T value_type;
  typedef value_type* pointer;
  typedef const value_type* const_pointer;
  typedef value_type* iterator; //vector 的叠代器是個原生的指針
  typedef const value_type* const_iterator;
  typedef value_type& reference;
  typedef const value_type& const_reference;
  typedef size_t size_type;
  typedef ptrdiff_t difference_type;


#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
  typedef reverse_iterator<const_iterator> const_reverse_iterator;
  typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
  typedef reverse_iterator<const_iterator, value_type, const_reference, 
                           difference_type>  const_reverse_iterator;
  typedef reverse_iterator<iterator, value_type, reference, difference_type>
          reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
protected:
  typedef simple_alloc<value_type, Alloc> data_allocator; //連續空間?
  iterator start; //表示眼下使用空間的頭
  iterator finish; //表示眼下使用空間的尾
  iterator end_of_storage; //表示眼下可用空間的尾
  void insert_aux(iterator position, const T& x);
  void deallocate() {
    if (start) data_allocator::deallocate(start, end_of_storage - start);
  }
  // 填充並予以初始化
  void fill_initialize(size_type n, const T& value) {
    start = allocate_and_fill(n, value);
    finish = start + n;
    end_of_storage = finish;
  }
public:
  iterator begin() { return start; }
  const_iterator begin() const { return start; }
  iterator end() { return finish; }
  const_iterator end() const { return finish; }
  reverse_iterator rbegin() { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const { 
    return const_reverse_iterator(end()); 
  }
  reverse_iterator rend() { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const { 
    return const_reverse_iterator(begin()); 
  }
  size_type size() const { return size_type(end() - begin()); }
  size_type max_size() const { return size_type(-1) / sizeof(T); }
  size_type capacity() const { return size_type(end_of_storage - begin()); }
  bool empty() const { return begin() == end(); }
  reference operator[](size_type n) { return *(begin() + n); }
  const_reference operator[](size_type n) const { return *(begin() + n); }


  vector() : start(0), finish(0), end_of_storage(0) {}
  //構造函數,同意指定 vector 大小 n 和初值 value
  vector(size_type n, const T& value) { fill_initialize(n, value); }
  vector(int n, const T& value) { fill_initialize(n, value); }
  vector(long n, const T& value) { fill_initialize(n, value); }
  explicit vector(size_type n) { fill_initialize(n, T()); }


  vector(const vector<T, Alloc>& x) {
    start = allocate_and_copy(x.end() - x.begin(), x.begin(), x.end());
    finish = start + (x.end() - x.begin());
    end_of_storage = finish;
  }
#ifdef __STL_MEMBER_TEMPLATES
  template <class InputIterator>
  vector(InputIterator first, InputIterator last) :
    start(0), finish(0), end_of_storage(0)
  {
    range_initialize(first, last, iterator_category(first));
  }
#else /* __STL_MEMBER_TEMPLATES */
  vector(const_iterator first, const_iterator last) {
    size_type n = 0;
    distance(first, last, n);
    start = allocate_and_copy(n, first, last);
    finish = start + n;
    end_of_storage = finish;
  }
#endif /* __STL_MEMBER_TEMPLATES */
  ~vector() { 
    destroy(start, finish);
    deallocate();
  }
  vector<T, Alloc>& operator=(const vector<T, Alloc>& x);
  void reserve(size_type n) {
    if (capacity() < n) {
      const size_type old_size = size();
      iterator tmp = allocate_and_copy(n, start, finish);
      destroy(start, finish);
      deallocate();
      start = tmp;
      finish = tmp + old_size;
      end_of_storage = start + n;
    }
  }
  reference front() { return *begin(); }
  const_reference front() const { return *begin(); }
  reference back() { return *(end() - 1); }
  const_reference back() const { return *(end() - 1); }
  //
  void push_back(const T& x) {
    if (finish != end_of_storage) { //檢查是否還有備用空間
      construct(finish, x); //有,直接在備用空間上構造元素
      ++finish; //調整叠代器 finish
    }
    else
      insert_aux(end(), x); //沒有,擴充空間(又一次配置、元素移動、釋放原空間)
  }
  void swap(vector<T, Alloc>& x) {
    __STD::swap(start, x.start);
    __STD::swap(finish, x.finish);
    __STD::swap(end_of_storage, x.end_of_storage);
  }
  iterator insert(iterator position, const T& x) {
    size_type n = position - begin();
    if (finish != end_of_storage && position == end()) {
      construct(finish, x);
      ++finish;
    }
    else
      insert_aux(position, x);
    return begin() + n;
  }
  iterator insert(iterator position) { return insert(position, T()); }
#ifdef __STL_MEMBER_TEMPLATES
  template <class InputIterator>
  void insert(iterator position, InputIterator first, InputIterator last) {
    range_insert(position, first, last, iterator_category(first));
  }
#else /* __STL_MEMBER_TEMPLATES */
  void insert(iterator position,
              const_iterator first, const_iterator last);
#endif /* __STL_MEMBER_TEMPLATES */


  void insert (iterator pos, size_type n, const T& x);
  void insert (iterator pos, int n, const T& x) {
    insert(pos, (size_type) n, x);
  }
  void insert (iterator pos, long n, const T& x) {
    insert(pos, (size_type) n, x);
  }


  void pop_back() {
    --finish; //將尾端標記往前移一格,表示將放棄尾端元素
    destroy(finish); //析構尾端元素
  }
  //清除 position 指向的元素
  iterator erase(iterator position) {
    if (position + 1 != end())
      copy(position + 1, finish, position);
    --finish;
    destroy(finish);
    return position;
  }
  //清除[first, last)中的全部元素
  iterator erase(iterator first, iterator last) {
    iterator i = copy(last, finish, first); //將 [last, finish) 指示的元素拷貝至 first 叠代器開頭的地方 
    destroy(i, finish); //析構[i, finish) 裏的元素
    finish = finish - (last - first); //調整 finish 指示的位置 last - first 表示清除掉了的元素個數
    return first;
  }
  void resize(size_type new_size, const T& x) {
    if (new_size < size()) 
      erase(begin() + new_size, end());
    else
      insert(end(), new_size - size(), x);
  }
  void resize(size_type new_size) { resize(new_size, T()); }
  //調用 erase 清除全部元素
  void clear() { erase(begin(), end()); }


protected:
  //配置而後填充
  iterator allocate_and_fill(size_type n, const T& x) {
    iterator result = data_allocator::allocate(n); //配置 n 個元素空間
    __STL_TRY {
      uninitialized_fill_n(result, n, x); //全局函數。全依據 result 的類型特性(type traits)決定使用算法 fill_n() 或重復調用  construct() 來完畢任務
      return result;
    }
    __STL_UNWIND(data_allocator::deallocate(result, n));
  }


#ifdef __STL_MEMBER_TEMPLATES
  template <class ForwardIterator>
  iterator allocate_and_copy(size_type n,
                             ForwardIterator first, ForwardIterator last) {
    iterator result = data_allocator::allocate(n);
    __STL_TRY {
      uninitialized_copy(first, last, result);
      return result;
    }
    __STL_UNWIND(data_allocator::deallocate(result, n));
  }
#else /* __STL_MEMBER_TEMPLATES */
  iterator allocate_and_copy(size_type n,
                             const_iterator first, const_iterator last) {
    iterator result = data_allocator::allocate(n);
    __STL_TRY {
      uninitialized_copy(first, last, result);
      return result;
    }
    __STL_UNWIND(data_allocator::deallocate(result, n));
  }
#endif /* __STL_MEMBER_TEMPLATES */




#ifdef __STL_MEMBER_TEMPLATES
  template <class InputIterator>
  void range_initialize(InputIterator first, InputIterator last,
                        input_iterator_tag) {
    for ( ; first != last; ++first)
      push_back(*first);
  }


  // This function is only called by the constructor.  We have to worry
  //  about resource leaks, but not about maintaining invariants.
  template <class ForwardIterator>
  void range_initialize(ForwardIterator first, ForwardIterator last,
                        forward_iterator_tag) {
    size_type n = 0;
    distance(first, last, n);
    start = allocate_and_copy(n, first, last);
    finish = start + n;
    end_of_storage = finish;
  }


  template <class InputIterator>
  void range_insert(iterator pos,
                    InputIterator first, InputIterator last,
                    input_iterator_tag);


  template <class ForwardIterator>
  void range_insert(iterator pos,
                    ForwardIterator first, ForwardIterator last,
                    forward_iterator_tag);


#endif /* __STL_MEMBER_TEMPLATES */
};


template <class T, class Alloc>
inline bool operator==(const vector<T, Alloc>& x, const vector<T, Alloc>& y) {
  return x.size() == y.size() && equal(x.begin(), x.end(), y.begin());
}


template <class T, class Alloc>
inline bool operator<(const vector<T, Alloc>& x, const vector<T, Alloc>& y) {
  return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}


#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER


template <class T, class Alloc>
inline void swap(vector<T, Alloc>& x, vector<T, Alloc>& y) {
  x.swap(y);
}


#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */


template <class T, class Alloc>
vector<T, Alloc>& vector<T, Alloc>::operator=(const vector<T, Alloc>& x) {
  if (&x != this) {
    if (x.size() > capacity()) {
      iterator tmp = allocate_and_copy(x.end() - x.begin(),
                                       x.begin(), x.end());
      destroy(start, finish);
      deallocate();
      start = tmp;
      end_of_storage = start + (x.end() - x.begin());
    }
    else if (size() >= x.size()) {
      iterator i = copy(x.begin(), x.end(), begin());
      destroy(i, finish);
    }
    else {
      copy(x.begin(), x.begin() + size(), start);
      uninitialized_copy(x.begin() + size(), x.end(), finish);
    }
    finish = start + x.size();
  }
  return *this;
}


template <class T, class Alloc>
void vector<T, Alloc>::insert_aux(iterator position, const T& x) { 
  if (finish != end_of_storage) { // 不是備用空間不夠才會調用 insert_aux 來插入元素嗎? 為什麽還會出現 finish != end_of_storage 的情況 ?
								  // --> 除了 push_back 不夠空間時會調用 insert_aux,正常的 insert 也是調用 insert_aux 實現的。

//為什麽不直接 copy_backward(position, finish - 1, finish)。 然後 *position = x_copy 呢? construct(finish, *(finish - 1)); ++finish; T x_copy = x; copy_backward(position, finish - 2, finish - 1); *position = x_copy; } else { //無備用空間 position == finish const size_type old_size = size(); const size_type len = old_size != 0 ? 2 * old_size : 1; //假設原大小為0。則配置1個元素大小的空間,否則配置原大小兩倍的空間 iterator new_start = data_allocator::allocate(len); //實際配置 iterator new_finish = new_start; __STL_TRY { //將原空間的全部內容拷貝到新空間 positition new_finish = uninitialized_copy(start, position, new_start); //為新元素設定初值 x construct(new_finish, x); //調整叠代器 finish ++new_finish; //??我認為以下這行代碼沒用。由於無備用空間的情況,position == finish new_finish = uninitialized_copy(position, finish, new_finish); } # ifdef __STL_USE_EXCEPTIONS catch(...) { //異常居然能夠用三個小點 ... ?

?

//回滾 destroy(new_start, new_finish); data_allocator::deallocate(new_start, len); throw; } # endif /* __STL_USE_EXCEPTIONS */ //析構並釋放原空間 destroy(begin(), end()); deallocate(); //調整叠代器。指向新 vector start = new_start; finish = new_finish; end_of_storage = new_start + len; } } template <class T, class Alloc> //從 position 開始,插入 n 個元素,元素初值為 x void vector<T, Alloc>::insert(iterator position, size_type n, const T& x) { if (n != 0) { // 當 n != 0 才進行以下全部操作 if (size_type(end_of_storage - finish) >= n) { //備用空間大於新增元素個數 T x_copy = x; const size_type elems_after = finish - position; //插入點之後的的現有元素個數 iterator old_finish = finish; if (elems_after > n) { //"插入點之後的的現有元素個數"大於"新增元素個數" //空間還沒初始化時用 uninitialized_copy 。 已經初始化了用 copy_backward uninitialized_copy(finish - n, finish, finish); finish += n; copy_backward(position, old_finish - n, old_finish); fill(position, position + n, x_copy); //從插入點開始填入新值 } else { //"插入點之後的的現有元素個數"小於"新增元素個數" uninitialized_fill_n(finish, n - elems_after, x_copy); finish += n - elems_after; uninitialized_copy(position, old_finish, finish); finish += elems_after; fill(position, old_finish, x_copy); } } else {//備用空間小於新增元素個數 const size_type old_size = size(); // 首先決定新長度:舊長度的兩倍或舊長度+新元素個數,這兩個中取最大值 const size_type len = old_size + max(old_size, n); iterator new_start = data_allocator::allocate(len); iterator new_finish = new_start; __STL_TRY { //先用 uninitialized_copy 將舊 vector 的插入點之前的元素拷貝到新空間 new_finish = uninitialized_copy(start, position, new_start); //再用 uninitialized_fill_n 將新增元素填入新空間 new_finish = uninitialized_fill_n(new_finish, n, x); //最後再用 uninitialized_copy 將舊 vector 的插入點之後的元素拷貝到新空間 new_finish = uninitialized_copy(position, finish, new_finish); } # ifdef __STL_USE_EXCEPTIONS catch(...) { destroy(new_start, new_finish); data_allocator::deallocate(new_start, len); throw; } # endif /* __STL_USE_EXCEPTIONS */ //清除並釋放舊的 vector destroy(start, finish); deallocate(); //調整標記 start = new_start; finish = new_finish; end_of_storage = new_start + len; } } } #ifdef __STL_MEMBER_TEMPLATES template <class T, class Alloc> template <class InputIterator> void vector<T, Alloc>::range_insert(iterator pos, InputIterator first, InputIterator last, input_iterator_tag) { for ( ; first != last; ++first) { pos = insert(pos, *first); ++pos; } } template <class T, class Alloc> template <class ForwardIterator> void vector<T, Alloc>::range_insert(iterator position, ForwardIterator first, ForwardIterator last, forward_iterator_tag) { if (first != last) { size_type n = 0; distance(first, last, n); if (size_type(end_of_storage - finish) >= n) { const size_type elems_after = finish - position; iterator old_finish = finish; if (elems_after > n) { uninitialized_copy(finish - n, finish, finish); finish += n; copy_backward(position, old_finish - n, old_finish); copy(first, last, position); } else { ForwardIterator mid = first; advance(mid, elems_after); uninitialized_copy(mid, last, finish); finish += n - elems_after; uninitialized_copy(position, old_finish, finish); finish += elems_after; copy(first, mid, position); } } else { const size_type old_size = size(); const size_type len = old_size + max(old_size, n); iterator new_start = data_allocator::allocate(len); iterator new_finish = new_start; __STL_TRY { new_finish = uninitialized_copy(start, position, new_start); new_finish = uninitialized_copy(first, last, new_finish); new_finish = uninitialized_copy(position, finish, new_finish); } # ifdef __STL_USE_EXCEPTIONS catch(...) { destroy(new_start, new_finish); data_allocator::deallocate(new_start, len); throw; } # endif /* __STL_USE_EXCEPTIONS */ destroy(start, finish); deallocate(); start = new_start; finish = new_finish; end_of_storage = new_start + len; } } } #else /* __STL_MEMBER_TEMPLATES */ template <class T, class Alloc> void vector<T, Alloc>::insert(iterator position, const_iterator first, const_iterator last) { if (first != last) { size_type n = 0; distance(first, last, n); if (size_type(end_of_storage - finish) >= n) { const size_type elems_after = finish - position; iterator old_finish = finish; if (elems_after > n) { uninitialized_copy(finish - n, finish, finish); finish += n; copy_backward(position, old_finish - n, old_finish); copy(first, last, position); } else { uninitialized_copy(first + elems_after, last, finish); finish += n - elems_after; uninitialized_copy(position, old_finish, finish); finish += elems_after; copy(first, first + elems_after, position); } } else { const size_type old_size = size(); const size_type len = old_size + max(old_size, n); iterator new_start = data_allocator::allocate(len); iterator new_finish = new_start; __STL_TRY { new_finish = uninitialized_copy(start, position, new_start); new_finish = uninitialized_copy(first, last, new_finish); new_finish = uninitialized_copy(position, finish, new_finish); } # ifdef __STL_USE_EXCEPTIONS catch(...) { destroy(new_start, new_finish); data_allocator::deallocate(new_start, len); throw; } # endif /* __STL_USE_EXCEPTIONS */ destroy(start, finish); deallocate(); start = new_start; finish = new_finish; end_of_storage = new_start + len; } } } #endif /* __STL_MEMBER_TEMPLATES */ #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma reset woff 1174 #endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_VECTOR_H */ // Local Variables: // mode:C++ // End:



STL源代碼剖析 容器 stl_vector.h