1. 程式人生 > >mysql:索引原理與慢查詢優化

mysql:索引原理與慢查詢優化

一個 mark index out 般的 test output 都是 records

  • 一 介紹
  • 二 索引的原理
  • 三 索引的數據結構
  • 三 MySQL索引管理
  • 四 測試索引
  • 五 正確使用索引
  • 六 查詢優化神器-explain
  • 七 慢查詢優化的基本步驟
  • 八 慢日誌管理
  • 九 參考博客

一 介紹

為何要有索引?

一般的應用系統,讀寫比例在10:1左右,而且插入操作和一般的更新操作很少出現性能問題,在生產環境中,我們遇到最多的,也是最容易出問題的,還是一些復雜的查詢操作,因此對查詢語句的優化顯然是重中之重。說起加速查詢,就不得不提到索引了。

什麽是索引?

索引在MySQL中也叫做“鍵”,是存儲引擎用於快速找到記錄的一種數據結構。索引對於良好的性能
非常關鍵,尤其是當表中的數據量越來越大時,索引對於性能的影響愈發重要。


索引優化應該是對查詢性能優化最有效的手段了。索引能夠輕易將查詢性能提高好幾個數量級。
索引相當於字典的音序表,如果要查某個字,如果不使用音序表,則需要從幾百頁中逐頁去查。

技術分享
                      30

        10                          40

   5         15               35          66

1    6    11   19          21   39     55    100
技術分享

二 索引的原理

一 索引原理

索引的目的在於提高查詢效率,與我們查閱圖書所用的目錄是一個道理:先定位到章,然後定位到該章下的一個小節,然後找到頁數。相似的例子還有:查字典,查火車車次,飛機航班等

本質都是:通過不斷地縮小想要獲取數據的範圍來篩選出最終想要的結果,同時把隨機的事件變成順序的事件,也就是說,有了這種索引機制,我們可以總是用同一種查找方式來鎖定數據。

數據庫也是一樣,但顯然要復雜的多,因為不僅面臨著等值查詢,還有範圍查詢(>、<、between、in)、模糊查詢(like)、並集查詢(or)等等。數據庫應該選擇怎麽樣的方式來應對所有的問題呢?我們回想字典的例子,能不能把數據分成段,然後分段查詢呢?最簡單的如果1000條數據,1到100分成第一段,101到200分成第二段,201到300分成第三段......這樣查第250條數據,只要找第三段就可以了,一下子去除了90%的無效數據。但如果是1千萬的記錄呢,分成幾段比較好?稍有算法基礎的同學會想到搜索樹,其平均復雜度是lgN,具有不錯的查詢性能。但這裏我們忽略了一個關鍵的問題,復雜度模型是基於每次相同的操作成本來考慮的。而數據庫實現比較復雜,一方面數據是保存在磁盤上的,另外一方面為了提高性能,每次又可以把部分數據讀入內存來計算,因為我們知道訪問磁盤的成本大概是訪問內存的十萬倍左右,所以簡單的搜索樹難以滿足復雜的應用場景。

二 磁盤IO與預讀

前面提到了訪問磁盤,那麽這裏先簡單介紹一下磁盤IO和預讀,磁盤讀取數據靠的是機械運動,每次讀取數據花費的時間可以分為尋道時間、旋轉延遲、傳輸時間三個部分,尋道時間指的是磁臂移動到指定磁道所需要的時間,主流磁盤一般在5ms以下;旋轉延遲就是我們經常聽說的磁盤轉速,比如一個磁盤7200轉,表示每分鐘能轉7200次,也就是說1秒鐘能轉120次,旋轉延遲就是1/120/2 = 4.17ms;傳輸時間指的是從磁盤讀出或將數據寫入磁盤的時間,一般在零點幾毫秒,相對於前兩個時間可以忽略不計。那麽訪問一次磁盤的時間,即一次磁盤IO的時間約等於5+4.17 = 9ms左右,聽起來還挺不錯的,但要知道一臺500 -MIPS(Million Instructions Per Second)的機器每秒可以執行5億條指令,因為指令依靠的是電的性質,換句話說執行一次IO的時間可以執行約450萬條指令,數據庫動輒十萬百萬乃至千萬級數據,每次9毫秒的時間,顯然是個災難。下圖是計算機硬件延遲的對比圖,供大家參考:

技術分享

考慮到磁盤IO是非常高昂的操作,計算機操作系統做了一些優化,當一次IO時,不光把當前磁盤地址的數據,而是把相鄰的數據也都讀取到內存緩沖區內,因為局部預讀性原理告訴我們,當計算機訪問一個地址的數據的時候,與其相鄰的數據也會很快被訪問到。每一次IO讀取的數據我們稱之為一頁(page)。具體一頁有多大數據跟操作系統有關,一般為4k或8k,也就是我們讀取一頁內的數據時候,實際上才發生了一次IO,這個理論對於索引的數據結構設計非常有幫助。

三 索引的數據結構

前面講了索引的基本原理,數據庫的復雜性,又講了操作系統的相關知識,目的就是讓大家了解,任何一種數據結構都不是憑空產生的,一定會有它的背景和使用場景,我們現在總結一下,我們需要這種數據結構能夠做些什麽,其實很簡單,那就是:每次查找數據時把磁盤IO次數控制在一個很小的數量級,最好是常數數量級。那麽我們就想到如果一個高度可控的多路搜索樹是否能滿足需求呢?就這樣,b+樹應運而生。

技術分享

如上圖,是一顆b+樹,關於b+樹的定義可以參見B+樹,這裏只說一些重點,淺藍色的塊我們稱之為一個磁盤塊,可以看到每個磁盤塊包含幾個數據項(深藍色所示)和指針(黃色所示),如磁盤塊1包含數據項17和35,包含指針P1、P2、P3,P1表示小於17的磁盤塊,P2表示在17和35之間的磁盤塊,P3表示大於35的磁盤塊。真實的數據存在於葉子節點即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非葉子節點只不存儲真實的數據,只存儲指引搜索方向的數據項,如17、35並不真實存在於數據表中。

###b+樹的查找過程
如圖所示,如果要查找數據項29,那麽首先會把磁盤塊1由磁盤加載到內存,此時發生一次IO,在內存中用二分查找確定29在17和35之間,鎖定磁盤塊1的P2指針,內存時間因為非常短(相比磁盤的IO)可以忽略不計,通過磁盤塊1的P2指針的磁盤地址把磁盤塊3由磁盤加載到內存,發生第二次IO,29在26和30之間,鎖定磁盤塊3的P2指針,通過指針加載磁盤塊8到內存,發生第三次IO,同時內存中做二分查找找到29,結束查詢,總計三次IO。真實的情況是,3層的b+樹可以表示上百萬的數據,如果上百萬的數據查找只需要三次IO,性能提高將是巨大的,如果沒有索引,每個數據項都要發生一次IO,那麽總共需要百萬次的IO,顯然成本非常非常高。

###b+樹性質
1.索引字段要盡量的小:通過上面的分析,我們知道IO次數取決於b+數的高度h,假設當前數據表的數據為N,每個磁盤塊的數據項的數量是m,則有h=㏒(m+1)N,當數據量N一定的情況下,m越大,h越小;而m = 磁盤塊的大小 / 數據項的大小,磁盤塊的大小也就是一個數據頁的大小,是固定的,如果數據項占的空間越小,數據項的數量越多,樹的高度越低。這就是為什麽每個數據項,即索引字段要盡量的小,比如int占4字節,要比bigint8字節少一半。這也是為什麽b+樹要求把真實的數據放到葉子節點而不是內層節點,一旦放到內層節點,磁盤塊的數據項會大幅度下降,導致樹增高。當數據項等於1時將會退化成線性表。
2.索引的最左匹配特性:當b+樹的數據項是復合的數據結構,比如(name,age,sex)的時候,b+數是按照從左到右的順序來建立搜索樹的,比如當(張三,20,F)這樣的數據來檢索的時候,b+樹會優先比較name來確定下一步的所搜方向,如果name相同再依次比較age和sex,最後得到檢索的數據;但當(20,F)這樣的沒有name的數據來的時候,b+樹就不知道下一步該查哪個節點,因為建立搜索樹的時候name就是第一個比較因子,必須要先根據name來搜索才能知道下一步去哪裏查詢。比如當(張三,F)這樣的數據來檢索時,b+樹可以用name來指定搜索方向,但下一個字段age的缺失,所以只能把名字等於張三的數據都找到,然後再匹配性別是F的數據了, 這個是非常重要的性質,即索引的最左匹配特性。

三 MySQL索引管理

一 功能

#1. 索引的功能就是加速查找
#2. mysql中的primary key,unique,聯合唯一也都是索引,這些索引除了加速查找以外,還有約束的功能

二 MySQL常用的索引

技術分享
普通索引INDEX:加速查找

唯一索引:
    -主鍵索引PRIMARY KEY:加速查找+約束(不為空、不能重復)
    -唯一索引UNIQUE:加速查找+約束(不能重復)

聯合索引:
    -PRIMARY KEY(id,name):聯合主鍵索引
    -UNIQUE(id,name):聯合唯一索引
    -INDEX(id,name):聯合普通索引
技術分享

各個索引的應用場景

舉個例子來說,比如你在為某商場做一個會員卡的系統。

這個系統有一個會員表
有下列字段:
會員編號 INT
會員姓名 VARCHAR(10)
會員身份證號碼 VARCHAR(18)
會員電話 VARCHAR(10)
會員住址 VARCHAR(50)
會員備註信息 TEXT

那麽這個 會員編號,作為主鍵,使用 PRIMARY
會員姓名 如果要建索引的話,那麽就是普通的 INDEX
會員身份證號碼 如果要建索引的話,那麽可以選擇 UNIQUE (唯一的,不允許重復)

#除此之外還有全文索引,即FULLTEXT
會員備註信息 , 如果需要建索引的話,可以選擇全文搜索。
用於搜索很長一篇文章的時候,效果最好。
用在比較短的文本,如果就一兩行字的,普通的 INDEX 也可以。
但其實對於全文搜索,我們並不會使用MySQL自帶的該索引,而是會選擇第三方軟件如Sphinx,專門來做全文搜索。

#其他的如空間索引SPATIAL,了解即可,幾乎不用

三 索引的兩大類型hash與btree

技術分享
#我們可以在創建上述索引的時候,為其指定索引類型,分兩類
hash類型的索引:查詢單條快,範圍查詢慢
btree類型的索引:b+樹,層數越多,數據量指數級增長(我們就用它,因為innodb默認支持它)

#不同的存儲引擎支持的索引類型也不一樣
InnoDB 支持事務,支持行級別鎖定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
MyISAM 不支持事務,支持表級別鎖定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
Memory 不支持事務,支持表級別鎖定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
NDB 支持事務,支持行級別鎖定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
Archive 不支持事務,支持表級別鎖定,不支持 B-tree、Hash、Full-text 等索引;
        
技術分享

四 創建/刪除索引的語法

技術分享
#方法一:創建表時
      CREATE TABLE 表名 (
                字段名1  數據類型 [完整性約束條件…],
                字段名2  數據類型 [完整性約束條件…],
                [UNIQUE | FULLTEXT | SPATIAL ]   INDEX | KEY
                [索引名]  (字段名[(長度)]  [ASC |DESC]) 
                );


#方法二:CREATE在已存在的表上創建索引
        CREATE  [UNIQUE | FULLTEXT | SPATIAL ]  INDEX  索引名 
                     ON 表名 (字段名[(長度)]  [ASC |DESC]) ;


#方法三:ALTER TABLE在已存在的表上創建索引
        ALTER TABLE 表名 ADD  [UNIQUE | FULLTEXT | SPATIAL ] INDEX
                             索引名 (字段名[(長度)]  [ASC |DESC]) ;
                             
#刪除索引:DROP INDEX 索引名 ON 表名字;
技術分享

四 測試索引

一 準備

復制代碼
#1. 準備表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
);

#2. 創建存儲過程,實現批量插入記錄
delimiter $$ #聲明存儲過程的結束符號為$$
create procedure auto_insert1()
BEGIN
    declare i int default 1;
    while(i<3000000)do
        insert into s1 values(i,‘egon‘,‘male‘,concat(‘egon‘,i,‘@oldboy‘));
        set i=i+1;
    end while;
END$$ #$$結束
delimiter ; #重新聲明分號為結束符號

#3. 查看存儲過程
show create procedure auto_insert1\G 

#4. 調用存儲過程
call auto_insert1();
復制代碼

二 在沒有索引的前提下測試查詢速度

#無索引:mysql根本就不知道到底是否存在id等於333333333的記錄,只能把數據表從頭到尾掃描一遍,此時有多少個磁盤塊就需要進行多少IO操作,所以查詢速度很慢
mysql> select * from s1 where id=333333333;
Empty set (0.33 sec)

三 在表中已經存在大量數據的前提下,為某個字段段建立索引,建立速度會很慢

技術分享

四 在索引建立完畢後,以該字段為查詢條件時,查詢速度提升明顯

技術分享

PS:

1. mysql先去索引表裏根據b+樹的搜索原理很快搜索到id等於333333333的記錄不存在,IO大大降低,因而速度明顯提升

2. 我們可以去mysql的data目錄下找到該表,可以看到占用的硬盤空間多了

3. 需要註意,如下圖

技術分享

五 總結

技術分享
#1. 一定是為搜索條件的字段創建索引,比如select * from s1 where id = 333;就需要為id加上索引

#2. 在表中已經有大量數據的情況下,建索引會很慢,且占用硬盤空間,建完後查詢速度加快
比如create index idx on s1(id);會掃描表中所有的數據,然後以id為數據項,創建索引結構,存放於硬盤的表中。
建完以後,再查詢就會很快了。

#3. 需要註意的是:innodb表的索引會存放於s1.ibd文件中,而myisam表的索引則會有單獨的索引文件table1.MYI
技術分享

五 正確使用索引

一 索引未命中

並不是說我們創建了索引就一定會加快查詢速度,若想利用索引達到預想的提高查詢速度的效果,我們在添加索引時,必須遵循以下問題

1 範圍問題,或者說條件不明確,條件中出現這些符號或關鍵字:>、>=、<、<=、!= 、between...and...、like、

大於號、小於號

技術分享

不等於!=

技術分享

between ...and...

技術分享

like

技術分享

技術分享

2 盡量選擇區分度高的列作為索引,區分度的公式是count(distinct col)/count(*),表示字段不重復的比例,比例越大我們掃描的記錄數越少,唯一鍵的區分度是1,而一些狀態、性別字段可能在大數據面前區分度就是0,那可能有人會問,這個比例有什麽經驗值嗎?使用場景不同,這個值也很難確定,一般需要join的字段我們都要求是0.1以上,即平均1條掃描10條記錄

技術分享 #先把表中的索引都刪除,讓我們專心研究區分度的問題
#先把表中的索引都刪除,讓我們專心研究區分度的問題
mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field  | Type        | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id     | int(11)     | YES  | MUL | NULL    |       |
| name   | varchar(20) | YES  |     | NULL    |       |
| gender | char(5)     | YES  |     | NULL    |       |
| email  | varchar(50) | YES  | MUL | NULL    |       |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

mysql> drop index a on s1;
Query OK, 0 rows affected (0.20 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> drop index d on s1;
Query OK, 0 rows affected (0.18 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field  | Type        | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id     | int(11)     | YES  |     | NULL    |       |
| name   | varchar(20) | YES  |     | NULL    |       |
| gender | char(5)     | YES  |     | NULL    |       |
| email  | varchar(50) | YES  |     | NULL    |       |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

技術分享

技術分享 分析原因
我們編寫存儲過程為表s1批量添加記錄,name字段的值均為egon,也就是說name這個字段的區分度很低(gender字段也是一樣的,我們稍後再搭理它)

回憶b+樹的結構,查詢的速度與樹的高度成反比,要想將樹的高低控制的很低,需要保證:在某一層內數據項均是按照從左到右,從小到大的順序依次排開,即左1<左2<左3<...

而對於區分度低的字段,無法找到大小關系,因為值都是相等的,毫無疑問,還想要用b+樹存放這些等值的數據,只能增加樹的高度,字段的區分度越低,則樹的高度越高。極端的情況,索引字段的值都一樣,那麽b+樹幾乎成了一根棍。本例中就是這種極端的情況,name字段所有的值均為‘egon‘

#現在我們得出一個結論:為區分度低的字段建立索引,索引樹的高度會很高,然而這具體會帶來什麽影響呢???

#1:如果條件是name=‘xxxx‘,那麽肯定是可以第一時間判斷出‘xxxx‘是不在索引樹中的(因為樹中所有的值均為‘egon’),所以查詢速度很快

#2:如果條件正好是name=‘egon‘,查詢時,我們永遠無法從樹的某個位置得到一個明確的範圍,只能往下找,往下找,往下找。。。這與全表掃描的IO次數沒有多大區別,所以速度很慢

3 =和in可以亂序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意順序,mysql的查詢優化器會幫你優化成索引可以識別的形式

4 索引列不能參與計算,保持列“幹凈”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很簡單,b+樹中存的都是數據表中的字段值,但進行檢索時,需要把所有元素都應用函數才能比較,顯然成本太大。所以語句應該寫成create_time = unix_timestamp(’2014-05-29’)

技術分享

5 and

條件1 and 條件2:在條件1不成立的情況下,不會再去判斷條件2,此時若條件1的字段有索引,而條件2沒有,那麽查詢速度依然很快

技術分享

在左邊條件成立但是索引字段的區分度低的情況下(name與gender均屬於這種情況),會依次往右找到一個區分度高的索引字段,加速查詢

技術分享

技術分享

經過分析,在條件為name=‘egon‘ and gender=‘male‘ and id>333 and email=‘xxx‘的情況下,我們完全沒必要為前三個條件的字段加索引,因為只能用上email字段的索引,前三個字段的索引反而會降低我們的查詢效率

技術分享

6 最左前綴匹配原則,非常重要的原則,對於組合索引mysql會一直向右匹配直到遇到範圍查詢(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)順序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引則都可以用到,a,b,d的順序可以任意調整。

技術分享

7 其他情況

    select * from tb1 where reverse(email) = ‘wupeiqi‘;
        
- or
    select * from tb1 where nid = 1 or name = ‘[email protected]‘;
    
    
    特別的:當or條件中有未建立索引的列才失效,以下會走索引
            select * from tb1 where nid = 1 or name = ‘seven‘;
            select * from tb1 where nid = 1 or name = ‘[email protected]‘ and email = ‘alex‘
            
            
- 類型不一致
    如果列是字符串類型,傳入條件是必須用引號引起來,不然...
    select * from tb1 where email = 999;
    
普通索引的不等於不會走索引
- !=
    select * from tb1 where email != ‘alex‘
    
    特別的:如果是主鍵,則還是會走索引
        select * from tb1 where nid != 123
- >
    select * from tb1 where email > ‘alex‘
    
    
    特別的:如果是主鍵或索引是整數類型,則還是會走索引
        select * from tb1 where nid > 123
        select * from tb1 where num > 123
        
        
#排序條件為索引,則select字段必須也是索引字段,否則無法命中
- order by
    select name from s1 order by email desc;
    當根據索引排序時候,select查詢的字段如果不是索引,則不走索引
    select email from s1 order by email desc;
    特別的:如果對主鍵排序,則還是走索引:
        select * from tb1 order by nid desc;
 
- 組合索引最左前綴
    如果組合索引為:(name,email)
    name and email       -- 使用索引
    name                 -- 使用索引
    email                -- 不使用索引


- count(1)或count(列)代替count(*)在mysql中沒有差別了

- create index xxxx  on tb(title(19)) #text類型,必須制定長度

其他註意事項

技術分享
- 避免使用select *
- count(1)或count(列) 代替 count(*)
- 創建表時盡量時 char 代替 varchar
- 表的字段順序固定長度的字段優先
- 組合索引代替多個單列索引(經常使用多個條件查詢時)
- 盡量使用短索引
- 使用連接(JOIN)來代替子查詢(Sub-Queries)
- 連表時註意條件類型需一致
- 索引散列值(重復少)不適合建索引,例:性別不適合
技術分享

三 覆蓋索引與索引合並

技術分享
#覆蓋索引:
    - 在索引文件中直接獲取數據
    http://blog.itpub.net/22664653/viewspace-774667/

#分析
select * from s1 where id=123;
該sql命中了索引,但未覆蓋索引。
利用id=123到索引的數據結構中定位到該id在硬盤中的位置,或者說再數據表中的位置。
但是我們select的字段為*,除了id以外還需要其他字段,這就意味著,我們通過索引結構取到id還不夠,還需要利用該id再去找到該id所在行的其他字段值,這是需要時間的,很明顯,如果我們只select id,就減去了這份苦惱,如下
select id from s1 where id=123;
這條就是覆蓋索引了,命中索引,且從索引的數據結構直接就取到了id在硬盤的地址,速度很快
技術分享

技術分享
#索引合並:把多個單列索引合並使用

#分析:
組合索引能做到的事情,我們都可以用索引合並去解決,比如
create index ne on s1(name,email);#組合索引
我們完全可以單獨為name和email創建索引

組合索引可以命中:
select * from s1 where name=‘egon‘ ;
select * from s1 where name=‘egon‘ and email=‘adf‘;

索引合並可以命中:
select * from s1 where name=‘egon‘ ;
select * from s1 where email=‘adf‘;
select * from s1 where name=‘egon‘ and email=‘adf‘;

乍一看好像索引合並更好了:可以命中更多的情況,但其實要分情況去看,如果是name=‘egon‘ and email=‘adf‘,那麽組合索引的效率要高於索引合並,如果是單條件查,那麽還是用索引合並比較合理
技術分享

六 查詢優化神器-explain

關於explain命令相信大家並不陌生,具體用法和字段含義可以參考官網explain-output,這裏需要強調rows是核心指標,絕大部分rows小的語句執行一定很快(有例外,下面會講到)。所以優化語句基本上都是在優化rows。

技術分享
執行計劃:讓mysql預估執行操作(一般正確)
    all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const
    id,email
    
    慢:
        select * from userinfo3 where name=‘alex‘
        
        explain select * from userinfo3 where name=‘alex‘
        type: ALL(全表掃描)
            select * from userinfo3 limit 1;
    快:
        select * from userinfo3 where email=‘alex‘
        type: const(走索引)
技術分享

http://blog.itpub.net/29773961/viewspace-1767044/

七 慢查詢優化的基本步驟

技術分享
0.先運行看看是否真的很慢,註意設置SQL_NO_CACHE
1.where條件單表查,鎖定最小返回記錄表。這句話的意思是把查詢語句的where都應用到表中返回的記錄數最小的表開始查起,單表每個字段分別查詢,看哪個字段的區分度最高
2.explain查看執行計劃,是否與1預期一致(從鎖定記錄較少的表開始查詢)
3.order by limit 形式的sql語句讓排序的表優先查
4.了解業務方使用場景
5.加索引時參照建索引的幾大原則
6.觀察結果,不符合預期繼續從0分析
技術分享

八 慢日誌管理

技術分享
        慢日誌
            - 執行時間 > 10
            - 未命中索引
            - 日誌文件路徑
            
        配置:
            - 內存
                show variables like ‘%query%‘;
                show variables like ‘%queries%‘;
                set global 變量名 = 值
            - 配置文件
                mysqld --defaults-file=‘E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini‘
                
                my.conf內容:
                    slow_query_log = ON
                    slow_query_log_file = D:/....
                    
                註意:修改配置文件之後,需要重啟服務
技術分享 慢日誌管理
MySQL日誌管理
========================================================
錯誤日誌: 記錄 MySQL 服務器啟動、關閉及運行錯誤等信息
二進制日誌: 又稱binlog日誌,以二進制文件的方式記錄數據庫中除 SELECT 以外的操作
查詢日誌: 記錄查詢的信息
慢查詢日誌: 記錄執行時間超過指定時間的操作
中繼日誌: 備庫將主庫的二進制日誌復制到自己的中繼日誌中,從而在本地進行重放
通用日誌: 審計哪個賬號、在哪個時段、做了哪些事件
事務日誌或稱redo日誌: 記錄Innodb事務相關的如事務執行時間、檢查點等
========================================================
一、bin-log
1. 啟用
# vim /etc/my.cnf
[mysqld]
log-bin[=dir\[filename]]
# service mysqld restart
2. 暫停
//僅當前會話
SET SQL_LOG_BIN=0;
SET SQL_LOG_BIN=1;
3. 查看
查看全部:
# mysqlbinlog mysql.000002
按時間:
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56"
# mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54"
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 

按字節數:
# mysqlbinlog mysql.000002 --start-position=260
# mysqlbinlog mysql.000002 --stop-position=260
# mysqlbinlog mysql.000002 --start-position=260 --stop-position=930
4. 截斷bin-log(產生新的bin-log文件)
a. 重啟mysql服務器
b. # mysql -uroot -p123 -e ‘flush logs‘
5. 刪除bin-log文件
# mysql -uroot -p123 -e ‘reset master‘ 


二、查詢日誌
啟用通用查詢日誌
# vim /etc/my.cnf
[mysqld]
log[=dir\[filename]]
# service mysqld restart

三、慢查詢日誌
啟用慢查詢日誌
# vim /etc/my.cnf
[mysqld]
log-slow-queries[=dir\[filename]]
long_query_time=n
# service mysqld restart
MySQL 5.6:
slow-query-log=1
slow-query-log-file=slow.log
long_query_time=3
查看慢查詢日誌
測試:BENCHMARK(count,expr)
SELECT BENCHMARK(50000000,2*3);

九 參考博客

https://tech.meituan.com/mysql-index.html

http://blog.itpub.net/29773961/viewspace-1767044/
http://www.cnblogs.com/wupeiqi/articles/5716963.html

http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.html
http://www.cnblogs.com/mr-wid/archive/2013/05/09/3068229.html
http://www.cnblogs.com/kissdodog/p/4159176.html
http://blog.csdn.net/ggxxkkll/article/details/7551766
http://blog.itpub.net/26435490/viewspace-1133659/
http://pymysql.readthedocs.io/en/latest/user/examples.html
http://www.cnblogs.com/lyhabc/p/3793524.html
http://www.jianshu.com/p/ed32d69383d2
http://doc.mysql.cn/mysql5/refman-5.1-zh.html-chapter/
http://doc.mysql.cn/
http://www.php100.com/html/webkaifa/database/Mysql/2013/0316/12223.html
http://blog.csdn.net/ltylove2007/article/details/21084809
http://lib.csdn.net/base/mysql
http://blog.csdn.net/c_enhui/article/details/9021271
http://www.cnblogs.com/edisonchou/p/3878135.html?utm_source=tuicool&utm_medium=referral
http://www.cnblogs.com/ggjucheng/archive/2012/11/11/2765465.html
http://www.cnblogs.com/cchust/p/3444510.html
http://www.docin.com/p-705091183.html
http://www.open-open.com/doc/view/51f552745f514bbbaf0aaecf6c88509a
http://www.open-open.com/doc/view/f80947a5c805458db8cf929834d241bf
http://www.open-open.com/lib/view/open1435498096607.html
http://www.open-open.com/doc/view/48c510607ab84fd8b87b158c3fe9d177
http://www.open-open.com/lib/view/open1448032294072.html
http://www.open-open.com/lib/view/open1404887901263.html
http://www.cnblogs.com/cchust/p/3426927.html
http://wribao.php230.com/category/news/1138254.html
http://www.iqiyi.com/w_19rqqds1ut.html
http://wenku.baidu.com/link?url=7Grxv0cQ_a00Ni2ZEU_cbDk2Wd2VTzlnS2UPKST3OF4oDqoLUQ2rQpOmK8ap12RDnXbnNs6gbY8DXVvWmo9bMxjWGS_vkhYus22ghAZYuES
http://www.cnblogs.com/edisonchou/p/3878135.html
http://blog.chinaunix.net/uid-540802-id-3419311.html
http://my.oschina.net/scipio/blog/293052
http://blog.itpub.net/29773961/viewspace-1767044/
http://my.oschina.net/lionets/blog/407263

mysql:索引原理與慢查詢優化