1. 程式人生 > >BitMap算法詳解

BitMap算法詳解

範圍 ... 開始 遍歷 基本 exists 維數 mage fin

  所謂的BitMap就是用一個bit位來標記某個元素所對應的value,而key即是該元素,由於BitMap使用了bit位來存儲數據,因此可以大大節省存儲空間。

基本思想:

  這此我用一個簡單的例子來詳細介紹BitMap算法的原理。假設我們要對0-7內的5個元素(4,7,2,5,3)進行排序(這裏假設元素沒有重復)。我們可以使用BitMap算法達到排序目的。要表示8個數,我們需要8個byte。

  1.首先我們開辟一個字節(8byte)的空間,將這些空間的所有的byte位都設置為0

  2.然後便利這5個元素,第一個元素是4,因為下邊從0開始,因此我們把第五個字節的值設置為1

  3.然後再處理剩下的四個元素,最終8個字節的狀態如下圖

  技術分享圖片

  4.現在我們遍歷一次bytes區域,把值為1的byte的位置輸出(2,3,4,5,7),這樣便達到了排序的目的

  從上面的例子我們可以看出,BitMap算法的思想還是比較簡單的,關鍵的問題是如何確定10進制的數到2進制的映射圖

MAP映射:

  假設需要排序或則查找的數的總數N=100000000,BitMap中1bit代表一個數字,1個int = 4Bytes = 4*8bit = 32 bit,那麽N個數需要N/32 int空間。所以我們需要申請內存空間的大小為int a[1 + N/32],其中:a[0]在內存中占32為可以對應十進制數0-31,依次類推:

  a[0]-----------------------------> 0-31

  a[1]------------------------------> 32-63

  a[2]-------------------------------> 64-95

  a[3]--------------------------------> 96-127

  ......................................................

  那麽十進制數如何轉換為對應的bit位,下面介紹用位移將十進制數轉換為對應的bit位:

  1.求十進制數在對應數組a中的下標

  十進制數0-31,對應在數組a[0]中,32-63對應在數組a[1]中,64-95對應在數組a[2]中………,使用數學歸納分析得出結論:對於一個十進制數n,其在數組a中的下標為:a[n/32]

  2.求出十進制數在對應數a[i]中的下標

  例如十進制數1在a[0]的下標為1,十進制數31在a[0]中下標為31,十進制數32在a[1]中下標為0。 在十進制0-31就對應0-31,而32-63則對應也是0-31,即給定一個數n可以通過模32求得在對應數組a[i]中的下標。

  3.位移

  對於一個十進制數n,對應在數組a[n/32][n%32]中,但數組a畢竟不是一個二維數組,我們通過移位操作實現置1

  a[n/32] |= 1 << n % 32
  移位操作:
  a[n>>5] |= 1 << (n & 0x1F)

  n & 0x1F 保留n的後五位 相當於 n % 32 求十進制數在數組a[i]中的下標

代碼實現:

  

public class BitMap {

    private static final int N = 10000000;

    private int[] a = new int[N/32 + 1];

    /**
     * 設置所在的bit位為1
     * @param n
     */
    public void addValue(int n){
        //row = n / 32 求十進制數在數組a中的下標
        int row = n >> 5;
        //相當於 n % 32 求十進制數在數組a[i]中的下標
        a[row] |= 1 << (n & 0x1F);
    }

    // 判斷所在的bit為是否為1
    public boolean exits(int n){
        int row = n >> 5;
        return (a[row] & ( 1 << (n & 0x1F))) != 1;
    }

    public void display(int row){
        System.out.println("BitMap位圖展示");
        for(int i=0;i<row;i++){
            List<Integer> list = new ArrayList<Integer>();
            int temp = a[i];
            for(int j=0;j<32;j++){
                list.add(temp & 1);
                temp >>= 1;
            }
            System.out.println("a["+i+"]" + list);
        }
    }

    public static void main(String[] args){
        int num[] = {1,5,30,32,64,56,159,120,21,17,35,45};
        BitMap map = new BitMap();
        for(int i=0;i<num.length;i++){
            map.addValue(num[i]);
        }

        int temp = 120;
        if(map.exits(temp)){
            System.out.println("temp:" + temp + "has already exists");
        }
        map.display(5);
    }
}

運行結果如下:

temp:120has already exists
BitMap位圖展示
a[0][0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
a[1][1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
a[2][1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
a[3][0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
a[4][0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

應用範圍:
  可以運用在快速查找、去重、排序、壓縮數據等。

  

BitMap算法詳解