1. 程式人生 > >[離散時間信號處理學習筆記] 9. z變換性質

[離散時間信號處理學習筆記] 9. z變換性質

ali nbsp tro mat ack 卷積 結果 n-1 學習筆記

z變換描述

$x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow}X(z) ,\quad ROC=R_x$

序列$x[n]$經過z變換後得到復變函數$X(z)$,該函數的收斂域為$R_x$

線性

z變換的線性性質

$ax_1[n]+bx_2[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} aX_1(z)+bX_2(z),\quad ROC\ contains\ R_{x_1}\cap R_{x_2}$

證明

$\begin{align*}\sum_{n=-\infty}^{\infty}(ax_1[n]+bx_2[n])z^{-n}
&=\sum_{n=-\infty}^{\infty}ax_1[n]z^{-n}+\sum_{n=-\infty}^{\infty}ax_2[n]z^{-n}\\
&=aX_1(z)+bX_2(z)
\end{align*}$

$X_1(z)$以及$X_2(z)$的收斂域分別為$R_{x_1}$以及$R_{x_2}$,不過他們兩個組合後可能會使得某些極點被消除,即線性組合後的z變換的收斂域與相交收斂域相比,可能會多出這些可能被消除的極點,所以這裏用“包含(contains)”。

時移

z變換的時移性質

$x[n-n_0]\stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-n_0}X(z),\quad ROC=R_x$

證明

$\begin{align*}\sum_{n=-\infty}^{\infty}x[n-n_0]z^{-n}
&=\sum_{m=-\infty}^{\infty}x[m]z^{-(m+n_0)}\quad letting\ m=n-n_0\\
&=\sum_{m=-\infty}^{\infty}x[m]z^{-m}z^{-n_0}\\
&=z^{-n_0}X(z)
\end{align*}$

指數相乘

指數相乘性質

$z_0^nx[n]\stackrel{\mathcal{Z}}{\longleftrightarrow}X\left(\frac{z}{z_0}\right),\quad ROC=|z_0|R_x $

證明

$\begin{align*}\sum_{n=-\infty}^{\infty}z_0^nx[n]z^{-n}
&=\sum_{n=-\infty}^{\infty}x[n]\left(\frac{z}{z_0}\right)^{-n}\\
&=X\left(\frac{z}{z_0}\right)
\end{align*}$

微分

微分性質

$nx[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} –z\frac{dX(z)}{dz},\quad ROC=R_x$

證明

$\begin{align*}\sum_{n=-\infty}^{\infty}nx[n]z^{-n}
&=\sum_{n=-\infty}^{\infty}nx[n]z^{-n}\\
&=-z\sum_{n=-\infty}^{\infty}(-n)x[n]z^{-n-1}\\
&=-z\sum_{n=-\infty}^{\infty}\frac{d\left(x[n]z^{-n}\right)}{dz}\\
&=-z\frac{d\left(\displaystyle{\sum_{n=-\infty}^{\infty}x[n]z^{-n}}\right)}{dz}\\
&=-z\frac{dX(z)}{dz}
\end{align*}$

共軛

共軛性質

$x^*[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X^{*}(z^*),\quad ROC=R_x$

證明

$\begin{align*}
\sum_{n=-\infty}^{\infty}x^*[n]z^{-n}
&=\sum_{n=-\infty}^{\infty}(|x[n]|cos\angle x[n]-i|x[n]|sin\angle x[n])[|z^{-n}|cos\angle (z^{-n})+i|z^{-n}|sin\angle(z^{-n})]\\
&=\sum_{n=-\infty}^{\infty}|x[n]|(cos \phi - isin\phi)|z^{-n}|[cos(-n\theta)+isin(-n\theta)] \quad letting\ \phi=\angle x[n],\theta=\angle (z)\\
&=\sum_{n=-\infty}^{\infty}|x[n]z^{-n}|{(cos\phi cos(-n\theta)+sin\phi sin(-n\theta)]+i[cos\phi sin(-n\theta)-sin\phi cos(-n\theta)]}\\
&=\sum_{n=-\infty}^{\infty}|x[n]z^{-n}|[cos(\phi+n\theta)+isin(-n\theta-\phi)]\\
&=\sum_{n=-\infty}^{\infty}|x[n]z^{-n}|[cos(\phi+n\theta)-isin(n\theta+\phi)]\\
\end{align*}$

又已知

$\displaystyle{\sum_{n=-\infty}^{\infty}x[n]z^{-n}=\sum_{n=-\infty}^{\infty}|x[n]z^{-n}|[cos(\phi-n\theta)+isin(\phi-n\theta)]}$

對比兩個式子的結果,得證。

時間倒置

時間倒置性質

$x[-n]\stackrel{\mathcal{Z}}{\longleftrightarrow}X\left( \frac{1}{z} \right),\quad ROC=\frac{1}{R_x}$

證明

$\begin{align*}
\sum_{n=-\infty}^{\infty}x[-n]z^{-n}
&=\sum_{m=-\infty}^{\infty}x[m]z^{m}\quad letting\ m=-n\\
&=\sum_{m=-\infty}^{\infty}x[m]\left( \frac{1}{z}\right )^m\\
&=X\left(\frac{1}{z} \right )
\end{align*}$

卷積

卷積性質

$x_1[n]*x_2[n] \stackrel{\mathcal{Z}}{\longleftrightarrow}X_1(z)X_2(z),\quad ROC\ contains\ R_{x_1}\cap R_{x_2}$

證明

$\begin{align*}
\sum_{n=-\infty}^{\infty}(x_1[n]*x_2[n])z^{-n}
&= \sum_{n=-\infty}^{\infty}\left(\sum_{k=-\infty}^{\infty}x_1[k]x_2[n-k]\right)z^{-n}\\
&= \sum_{k=-\infty}^{\infty}x_1[k]\left(\sum_{n=-\infty}^{\infty}x_2[n-k]z^{-n} \right )\\
&= \sum_{k=-\infty}^{\infty}x_1[k]\left(\sum_{m=-\infty}^{\infty}x_2[m]z^{-m-k} \right )\quad letting\ m=n-k \\
&= \left(\sum_{k=-\infty}^{\infty}x_1[k]z^{-k} \right )\left(\sum_{m=-\infty}^{\infty}x_2[m]z^{-m} \right )\\
&= X_1(z)X_2(z)
\end{align*}$

[離散時間信號處理學習筆記] 9. z變換性質