1. 程式人生 > >JAVA多線程基礎學習三:volatile關鍵字

JAVA多線程基礎學習三:volatile關鍵字

編譯 一定的 true AD throws 行操作 執行效率 操作 分享圖片

Java的volatile關鍵字在JDK源碼中經常出現,但是對它的認識只是停留在共享變量上,今天來談談volatile關鍵字。

volatile,從字面上說是易變的、不穩定的,事實上,也確實如此,這個關鍵字的作用就是告訴編譯器,只要是被此關鍵字修飾的變量都是易變的、不穩定的。那為什麽是易變的呢?因為volatile所修飾的變量是直接存在於主內存中的,線程對變量的操作也是直接反映在主內存中,所以說其是易變的。

一、Java內存模型

Java內存模型規定所有的變量都是存在主存當中(類似於前面說的物理內存),每個線程都有自己的工作內存(類似於前面的高速緩存)。線程對變量的所有操作都必須在工作內存中進行,而不能直接對主存進行操作。並且每個線程不能訪問其他線程的工作內存。如下圖:

技術分享圖片

看個例子:

public class VolatileExample extends Thread{
    //設置類靜態變量,各線程訪問這同一共享變量
    private  static boolean flag = false;
    //無限循環,等待flag變為true時才跳出循環
   public void run() {
       while (!flag){
       };
       System.out.println("停止了");
   }

    public static void main(String[] args) throws
Exception { new VolatileExample().start(); //sleep的目的是等待線程啟動完畢,也就是說進入run的無限循環體了 Thread.sleep(100); flag = true; } }

這段代碼是很典型的一段代碼,很多人在中斷線程時可能都會采用這種標記辦法。但是事實上,這段代碼會完全運行正確麽?即一定會將線程中斷麽?不一定,也許在大多數時候,這個代碼能夠把線程中斷,但是也有可能會導致無法中斷線程(雖然這個可能性很小,但是只要一旦發生這種情況就會造成死循環了)。
我執行後發現上面的程序一直在while循環,不會打印“停止了”這條信息,為什麽呢?不是有設置flag=true嗎?


下面解釋一下這段代碼為何有可能導致無法中斷線程。在前面已經解釋過,每個線程在運行過程中都有自己的工作內存,那麽線程VolatileExample在運行的時候,會將flag變量的值拷貝一份放在自己的工作內存當中。
那麽當線程main更改了flag變量的值之後,但是還沒來得及寫入主存當中,線程main轉去做其他事情了,那麽線程VolatileExample由於不知道線程main對flag變量的更改,因此還會一直循環下去。

二、線程中的三個概念

1.原子性
在Java中,對基本數據類型的變量的讀取和賦值操作是原子性操作,即這些操作是不可被中斷的,要麽執行,要麽不執行。

上面一句話雖然看起來簡單,但是理解起來並不是那麽容易。看下面一個例子:

請分析以下哪些操作是原子性操作:

x = 10;         //語句1
y = x;         //語句2
x++;           //語句3
x = x + 1;     //語句4

咋一看,有些朋友可能會說上面的4個語句中的操作都是原子性操作。其實只有語句1是原子性操作,其他三個語句都不是原子性操作。 語句1是直接將數值10賦值給x,也就是說線程執行這個語句的會直接將數值10寫入到工作內存中。 語句2實際上包含2個操作,它先要去讀取x的值,再將x的值寫入工作內存,雖然讀取x的值以及 將x的值寫入工作內存 這2個操作都是原子性操作,但是合起來就不是原子性操作了。 同樣的,x++和 x = x+1包括3個操作:讀取x的值,進行加1操作,寫入新的值。 所以上面4個語句只有語句1的操作具備原子性。 也就是說,只有簡單的讀取、賦值(而且必須是將數字賦值給某個變量,變量之間的相互賦值不是原子操作)才是原子操作。 不過這裏有一點需要註意:在32位平臺下,對64位數據的讀取和賦值是需要通過兩個操作來完成的,不能保證其原子性。但是好像在最新的JDK中,JVM已經保證對64位數據的讀取和賦值也是原子性操作了。 從上面可以看出,Java內存模型只保證了基本讀取和賦值是原子性操作,如果要實現更大範圍操作的原子性,可以通過synchronized和Lock來實現。由於synchronized和Lock能夠保證任一時刻只有一個線程執行該代碼塊,那麽自然就不存在原子性問題了,從而保證了原子性。

2.可見性

對於可見性,Java提供了volatile關鍵字來保證可見性。

當一個共享變量被volatile修飾時,它會保證修改的值會立即被更新到主存,當有其他線程需要讀取時,它會去內存中讀取新值。

而普通的共享變量不能保證可見性,因為普通共享變量被修改之後,什麽時候被寫入主存是不確定的,當其他線程去讀取時,此時內存中可能還是原來的舊值,因此無法保證可見性。

另外,通過synchronized和Lock也能夠保證可見性,synchronized和Lock能保證同一時刻只有一個線程獲取鎖然後執行同步代碼,並且在釋放鎖之前會將對變量的修改刷新到主存當中。因此可以保證可見性。

3.有序性

在Java內存模型中,允許編譯器和處理器對指令進行重排序,但是重排序過程不會影響到單線程程序的執行,卻會影響到多線程並發執行的正確性。

在Java裏面,可以通過volatile關鍵字來保證一定的“有序性”(具體原理在下一節講述)。另外可以通過synchronized和Lock來保證有序性,很顯然,synchronized和Lock保證每個時刻是有一個線程執行同步代碼,相當於是讓線程順序執行同步代碼,自然就保證了有序性。

另外,Java內存模型具備一些先天的“有序性”,即不需要通過任何手段就能夠得到保證的有序性,這個通常也稱為 happens-before 原則。如果兩個操作的執行次序無法從happens-before原則推導出來,那麽它們就不能保證它們的有序性,虛擬機可以隨意地對它們進行重排序。

下面就來具體介紹下happens-before原則(先行發生原則):

程序次序規則:一個線程內,按照代碼順序,書寫在前面的操作先行發生於書寫在後面的操作
鎖定規則:一個unLock操作先行發生於後面對同一個鎖額lock操作
volatile變量規則:對一個變量的寫操作先行發生於後面對這個變量的讀操作
傳遞規則:如果操作A先行發生於操作B,而操作B又先行發生於操作C,則可以得出操作A先行發生於操作C
線程啟動規則:Thread對象的start()方法先行發生於此線程的每個一個動作
線程中斷規則:對線程interrupt()方法的調用先行發生於被中斷線程的代碼檢測到中斷事件的發生
線程終結規則:線程中所有的操作都先行發生於線程的終止檢測,我們可以通過Thread.join()方法結束、Thread.isAlive()的返回值手段檢測到線程已經終止執行
對象終結規則:一個對象的初始化完成先行發生於他的finalize()方法的開始
這8條原則摘自《深入理解Java虛擬機》。

這8條規則中,前4條規則是比較重要的,後4條規則都是顯而易見的。

下面我們來解釋一下前4條規則:

對於程序次序規則來說,我的理解就是一段程序代碼的執行在單個線程中看起來是有序的。註意,雖然這條規則中提到“書寫在前面的操作先行發生於書寫在後面的操作”,這個應該是程序看起來執行的順序是按照代碼順序執行的,因為虛擬機可能會對程序代碼進行指令重排序。雖然進行重排序,但是最終執行的結果是與程序順序執行的結果一致的,它只會對不存在數據依賴性的指令進行重排序。因此,在單個線程中,程序執行看起來是有序執行的,這一點要註意理解。事實上,這個規則是用來保證程序在單線程中執行結果的正確性,但無法保證程序在多線程中執行的正確性。

第二條規則也比較容易理解,也就是說無論在單線程中還是多線程中,同一個鎖如果出於被鎖定的狀態,那麽必須先對鎖進行了釋放操作,後面才能繼續進行lock操作。

第三條規則是一條比較重要的規則,也是後文將要重點講述的內容。直觀地解釋就是,如果一個線程先去寫一個變量,然後一個線程去進行讀取,那麽寫入操作肯定會先行發生於讀操作。

第四條規則實際上就是體現happens-before原則具備傳遞性。

三、volatile語義

一旦一個共享變量(類的成員變量、類的靜態成員變量)被volatile修飾之後,那麽就具備了兩層語義:

  • 保證了不同線程對這個變量進行操作時的可見性,即一個線程修改了某個變量的值,這新值對其他線程來說是立即可見的。
  • 禁止進行指令重排序。

所以當把上面代碼中變量flag改成下面這樣:

private  static valotile boolean flag = false;

在執行的話,你就會發現打印了“停止了”信息,因為用volatile修飾之後就變得不一樣了:

第一:使用volatile關鍵字會強制將修改的值立即寫入主存;

第二:使用volatile關鍵字的話,當線程main進行修改時,會導致線程那麽線程VolatileExample的工作內存中緩存變量flag的緩存行無效(反映到硬件層的話,就是CPU的L1或者L2緩存中對應的緩存行無效);

第三:由於線程那麽線程VolatileExample的工作內存中緩存變量flag的緩存行無效,所以線程那麽線程VolatileExample再次讀取變量flag的值時會去主存讀取。

那麽在線程main修改flag值時(當然這裏包括2個操作,修改線程main工作內存中的值,然後將修改後的值寫入內存),會使得線程VolatileExample的工作內存中緩存變量flag的緩存行無效,然後線程讀取時,發現自己的緩存行無效,它會等待緩存行對應的主存地址被更新之後,然後去對應的主存讀取最新的值。

那麽線程VolatileExample讀取到的就是最新的正確的值。

技術分享圖片

使用volatile關鍵字增加了實例變量在多個線程之間的可見性。但是volatile關鍵字最致命的缺點是不支持原子性。
下面將關鍵字synchronized和volatile進行一下比較:
1)關鍵字volatile是線程同步的輕量級實現,所以volatile性能肯定比synchronized要好,並且volatile只能修飾於變量,而synchronized可以修飾方法,以及代碼塊。隨著JDK新版本的發布,synchronized關鍵字在執行效率上得到很大提升,在開發中使用synchronized關鍵字的比率還是比較大的。

2)多線程訪問volatile不會發生阻塞,而synchronized會出現阻塞。

3)volatile能保證數據的可見性,但不能保證原子性;而synchronized可以保證原子性,也可以間接保證可見性,因為它將私有內存和公共內存中的數據做同步。

4)再次重申一下,關鍵字volatile解決的是變量在多個線程之間的可見性;而synchronized關鍵字解決的是多個線程之間訪問資源的同步性。

四、volatile非原子的特性

從上面知道volatile關鍵字保證了操作的可見性,但是volatile能保證對變量的操作是原子性嗎?
下面看一個例子:

public class Test {
    public volatile int inc = 0;
     
    public void increase() {
        inc++;
    }
     
    public static void main(String[] args) {
        final Test test = new Test();
        for(int i=0;i<10;i++){
            new Thread(){
                public void run() {
                    for(int j=0;j<1000;j++)
                        test.increase();
                };
            }.start();
        }
         
        while(Thread.activeCount()>2)  //保證前面的線程都執行完
            Thread.yield();
        System.out.println(test.inc);
    }
}

大家想一下這段程序的輸出結果是多少?也許有些朋友認為是10000。但是事實上運行它會發現每次運行結果都不一致,都是一個小於10000的數字。

可能有的朋友就會有疑問,不對啊,上面是對變量inc進行自增操作,由於volatile保證了可見性,那麽在每個線程中對inc自增完之後,在其他線程中都能看到修改後的值啊,所以有10個線程分別進行了1000次操作,那麽最終inc的值應該是1000*10=10000。

這裏面就有一個誤區了,volatile關鍵字能保證可見性沒有錯,但是上面的程序錯在沒能保證原子性。可見性只能保證每次讀取的是最新的值,但是volatile沒辦法保證對變量的操作的原子性。

在前面已經提到過,自增操作是不具備原子性的,它包括讀取變量的原始值、進行加1操作、寫入工作內存。那麽就是說自增操作的三個子操作可能會分割開執行,就有可能導致下面這種情況出現:

假如某個時刻變量inc的值為10,

線程1對變量進行自增操作,線程1先讀取了變量inc的原始值,然後線程1被阻塞了;

然後線程2對變量進行自增操作,線程2也去讀取變量inc的原始值,由於線程1只是對變量inc進行讀取操作,而沒有對變量進行修改操作,所以不會導致線程2的工作內存中緩存變量inc的緩存行無效,所以線程2會直接去主存讀取inc的值,發現inc的值時10,然後進行加1操作,並把11寫入工作內存,最後寫入主存。

然後線程1接著進行加1操作,由於已經讀取了inc的值,註意此時在線程1的工作內存中inc的值仍然為10,所以線程1對inc進行加1操作後inc的值為11,然後將11寫入工作內存,最後寫入主存。

那麽兩個線程分別進行了一次自增操作後,inc只增加了1。

解釋到這裏,可能有朋友會有疑問,不對啊,前面不是保證一個變量在修改volatile變量時,會讓緩存行無效嗎?然後其他線程去讀就會讀到新的值,對,這個沒錯。這個就是上面的happens-before規則中的volatile變量規則,但是要註意,線程1對變量進行讀取操作之後,被阻塞了的話,並沒有對inc值進行修改。然後雖然volatile能保證線程2對變量inc的值讀取是從內存中讀取的,但是線程1沒有進行修改,所以線程2根本就不會看到修改的值。

根源就在這裏,自增操作不是原子性操作,而且volatile也無法保證對變量的任何操作都是原子性的。

把上面的代碼改成以下任何一種都可以達到效果:

采用synchronized:

public class Test {
    public  int inc = 0;
    
    public synchronized void increase() {
        inc++;
    }
    
    public static void main(String[] args) {
        final Test test = new Test();
        for(int i=0;i<10;i++){
            new Thread(){
                public void run() {
                    for(int j=0;j<1000;j++)
                        test.increase();
                };
            }.start();
        }
        
        while(Thread.activeCount()>1)  //保證前面的線程都執行完
            Thread.yield();
        System.out.println(test.inc);
    }
}

采用Lock:

public class Test {
    public  int inc = 0;
    Lock lock = new ReentrantLock();
    
    public  void increase() {
        lock.lock();
        try {
            inc++;
        } finally{
            lock.unlock();
        }
    }
    
    public static void main(String[] args) {
        final Test test = new Test();
        for(int i=0;i<10;i++){
            new Thread(){
                public void run() {
                    for(int j=0;j<1000;j++)
                        test.increase();
                };
            }.start();
        }
        
        while(Thread.activeCount()>1)  //保證前面的線程都執行完
            Thread.yield();
        System.out.println(test.inc);
    }
}

采用AtomicInteger:

public class Test {
    public  AtomicInteger inc = new AtomicInteger();
     
    public  void increase() {
        inc.getAndIncrement();
    }
    
    public static void main(String[] args) {
        final Test test = new Test();
        for(int i=0;i<10;i++){
            new Thread(){
                public void run() {
                    for(int j=0;j<1000;j++)
                        test.increase();
                };
            }.start();
        }
        
        while(Thread.activeCount()>1)  //保證前面的線程都執行完
            Thread.yield();
        System.out.println(test.inc);
    }
}

在java 1.5的java.util.concurrent.atomic包下提供了一些原子操作類,即對基本數據類型的 自增(加1操作),自減(減1操作)、以及加法操作(加一個數),減法操作(減一個數)進行了封裝,保證這些操作是原子性操作。atomic是利用CAS來實現原子性操作的(Compare And Swap),CAS實際上是利用處理器提供的CMPXCHG指令實現的,而處理器執行CMPXCHG指令是一個原子性操作。

五、volatile能保證有序性

在前面提到volatile關鍵字能禁止指令重排序,所以volatile能在一定程度上保證有序性。

volatile關鍵字禁止指令重排序有兩層意思:

1)當程序執行到volatile變量的讀操作或者寫操作時,在其前面的操作的更改肯定全部已經進行,且結果已經對後面的操作可見;在其後面的操作肯定還沒有進行;

2)在進行指令優化時,不能將在對volatile變量訪問的語句放在其後面執行,也不能把volatile變量後面的語句放到其前面執行。

可能上面說的比較繞,舉個簡單的例子:

//x、y為非volatile變量
//flag為volatile變量
 
x = 2;        //語句1
y = 0;        //語句2
flag = true;  //語句3
x = 4;         //語句4
y = -1;       //語句5

由於flag變量為volatile變量,那麽在進行指令重排序的過程的時候,不會將語句3放到語句1、語句2前面,也不會講語句3放到語句4、語句5後面。但是要註意語句1和語句2的順序、語句4和語句5的順序是不作任何保證的。

並且volatile關鍵字能保證,執行到語句3時,語句1和語句2必定是執行完畢了的,且語句1和語句2的執行結果對語句3、語句4、語句5是可見的。

六、volatile的原理和實現機制

前面講述了源於volatile關鍵字的一些使用,下面我們來探討一下volatile到底如何保證可見性和禁止指令重排序的。

下面這段話摘自《深入理解Java虛擬機》:

“觀察加入volatile關鍵字和沒有加入volatile關鍵字時所生成的匯編代碼發現,加入volatile關鍵字時,會多出一個lock前綴指令”

lock前綴指令實際上相當於一個內存屏障(也成內存柵欄),內存屏障會提供3個功能:

  • 它確保指令重排序時不會把其後面的指令排到內存屏障之前的位置,也不會把前面的指令排到內存屏障的後面;即在執行到內存屏障這句指令時,在它前面的操作已經全部完成;

  • 它會強制將對緩存的修改操作立即寫入主存;

  • 如果是寫操作,它會導致其他CPU中對應的緩存行無效。

七、總結

synchronized關鍵字是防止多個線程同時執行一段代碼,那麽就會很影響程序執行效率,而volatile關鍵字在某些情況下性能要優於synchronized,但是要註意volatile關鍵字是無法替代synchronized關鍵字的,因為volatile關鍵字無法保證操作的原子性。通常來說,使用volatile必須具備以下2個條件:

  • 對變量的寫操作不依賴於當前值

  • 該變量沒有包含在具有其他變量的不變式中

實際上,這些條件表明,可以被寫入 volatile 變量的這些有效值獨立於任何程序的狀態,包括變量的當前狀態。
設計模式中的單例模式中的雙檢查鎖就使用到了volatile關鍵字。

說明:該文為本人學習的筆記,方便以後自己跳槽前復習。參考網上各大帖子,取其精華整合自己的理解而成。

技術分享圖片

JAVA多線程基礎學習三:volatile關鍵字