1. 程式人生 > >Python 線程同步鎖, 信號量

Python 線程同步鎖, 信號量

sleep 圖片 for 初始 image import lock 管理 img

同步鎖

import  time, threading

def addNum():
    global num
    num -= 1

num = 100

thread_list = []
for i in range(100):
    t = threading.Thread(target=addNum)
    t.start()
    thread_list.append(t)

for t in thread_list:
    t.join()

print(‘final num:‘, num)

運行結果:
final num: 0
import  time, threading

def addNum():
    global num
    #num -= 1
    tmp = num
    time.sleep(0.00001)
    num = tmp - 1

num = 100

thread_list = []
for i in range(100):
    t = threading.Thread(target=addNum)
    t.start()
    thread_list.append(t)

for t in thread_list:
    t.join()

print(‘final num:‘, num)

運行結果:
final num: 93 
或
final num: 91
或
final num: 94

原因:
第一個程序中,num -= 1 這種寫法,程序執行動作太快(完成這個動作在 cup 切換的時間內)
第二個程序中,把 num -= 1 , 加入了 sleep 時間,100個線程存在沒有執行完就進行了切換,導致全局的 num 沒有正常返回。引用下大神的圖發現總結得非常好:
技術分享圖片
在上面的例子中 使用 join 方法會把整個線程停住,造成了串行,失去了多線程的意義,我們只需要在涉及到計算公共數據的時候串行執行即可。

使用同步鎖處理計算公共的數據

import  time, threading

def addNum():
    global num

    lock.acquire()
    tmp = num
    time.sleep(0.00001)
    num = tmp - 1
    lock.release()


num = 100
lock = threading.Lock()
thread_list = []
for i in range(100):
    t = threading.Thread(target=addNum)
    t.start()
    thread_list.append(t)

for t in thread_list:
    t.join()

print(‘final num:‘, num)

運算結果:
final num: 0

線程死鎖和遞歸鎖

import  threading, time

class myThread(threading.Thread):
    def doA(self):
        lockA.acquire()
        print(self.name, "gotlockA", time.ctime())
        time.sleep(3)
        lockB.acquire()
        print(self.name, "gotlockB", time.ctime())
        lockB.release()
        lockA.release()

    def doB(self):
        lockB.acquire()
        print(self.name, "gotlockB", time.ctime())
        time.sleep(2)
        lockA.acquire()
        print(self.name, "gotlockA", time.ctime())
        lockA.release()
        lockB.release()

    def run(self):
        self.doA()
        self.doB()

if __name__ == ‘__main__‘:
    lockA = threading.Lock()
    lockB = threading.Lock()
    threads = []
    for i in range(5):
        threads.append(myThread())
    for t in threads:
        t.start()
    for t in threads:
        t.join()

#運行結果:
Thread-1 gotlockA Sat Jul 28 15:09:31 2018
Thread-1 gotlockB Sat Jul 28 15:09:34 2018
Thread-1 gotlockB Sat Jul 28 15:09:34 2018
Thread-2 gotlockA Sat Jul 28 15:09:34 2018

使用遞歸鎖

import  threading, time

class myThread(threading.Thread):
    def doA(self):
        lock.acquire()
        print(self.name, "gotlockA", time.ctime())
        time.sleep(3)
        lock.acquire()
        print(self.name, "gotlockB", time.ctime())
        lock.release()
        lock.release()

    def doB(self):
        lock.acquire()
        print(self.name, "gotlockB", time.ctime())
        time.sleep(2)
        lock.acquire()
        print(self.name, "gotlockA", time.ctime())
        lock.release()
        lock.release()

    def run(self):
        self.doA()
        self.doB()

if __name__ == ‘__main__‘:
    lock = threading.RLock()
    threads = []
    for i in range(5):
        threads.append(myThread())
    for t in threads:
        t.start()
    for t in threads:
        t.join()

運行結果:
Thread-1 gotlockA Sat Jul 28 15:19:35 2018
Thread-1 gotlockB Sat Jul 28 15:19:38 2018
Thread-1 gotlockB Sat Jul 28 15:19:38 2018
Thread-1 gotlockA Sat Jul 28 15:19:40 2018
Thread-3 gotlockA Sat Jul 28 15:19:40 2018
Thread-3 gotlockB Sat Jul 28 15:19:43 2018
Thread-3 gotlockB Sat Jul 28 15:19:43 2018
Thread-3 gotlockA Sat Jul 28 15:19:45 2018
Thread-5 gotlockA Sat Jul 28 15:19:45 2018
Thread-5 gotlockB Sat Jul 28 15:19:48 2018
Thread-5 gotlockB Sat Jul 28 15:19:48 2018
Thread-5 gotlockA Sat Jul 28 15:19:50 2018
Thread-4 gotlockA Sat Jul 28 15:19:50 2018
Thread-4 gotlockB Sat Jul 28 15:19:53 2018
Thread-4 gotlockB Sat Jul 28 15:19:53 2018
Thread-4 gotlockA Sat Jul 28 15:19:55 2018
Thread-2 gotlockA Sat Jul 28 15:19:55 2018
Thread-2 gotlockB Sat Jul 28 15:19:58 2018
Thread-2 gotlockB Sat Jul 28 15:19:58 2018
Thread-2 gotlockA Sat Jul 28 15:20:00 2018

信號量

信號量用來控制線程並發數的,BoundedSemaphore或Semaphore管理一個內置的計數 器,每當調用acquire()時-1,調用release()時+1,計數器不能小於0,當計數器為 0時,acquire()將阻塞線程至同步鎖定狀態,直到其他線程調用release()。(類似於停車位的概念)。
BoundedSemaphore與Semaphore的唯一區別在於前者將在調用release()時檢查計數 器的值是否超過了計數器的初始值,如果超過了將拋出一個異常。

import threading, time

class myThread(threading.Thread):
    def run(self):
        if semaphore.acquire():
            print(self.name)
            time.sleep(5)
            semaphore.release()

if __name__ == "__main__":
    semaphore = threading.Semaphore(5)
    thrs = []
    for i in range(20):
        thrs.append(myThread())
    for t in thrs:
        t.start()

#運行結果:
Thread-1
Thread-2
Thread-3
Thread-4
Thread-5
Thread-6
Thread-7
Thread-9
Thread-10
Thread-8
Thread-11
Thread-13
Thread-14
Thread-12
Thread-15
Thread-18
Thread-16
Thread-17
Thread-19
Thread-20
import threading, time

class myThread(threading.Thread):
    def run(self):
        if semaphore.acquire():
            print(self.name)
            time.sleep(5)
            semaphore.release()

if __name__ == "__main__":
    semaphore = threading.BoundedSemaphore(5)
    thrs = []
    for i in range(20):
        thrs.append(myThread())
    for t in thrs:
        t.start()

#運行結果:
Thread-1
Thread-2
Thread-3
Thread-4
Thread-5
Thread-6
Thread-8
Thread-10
Thread-9
Thread-7
Thread-12
Thread-14
Thread-15
Thread-13
Thread-11
Thread-16
Thread-17
Thread-20
Thread-19
Thread-18

Python 線程同步鎖, 信號量