1. 程式人生 > >細數激光雷達的那些類型

細數激光雷達的那些類型

匹配 放大器 全球定位 必須 結果 一定的 過程 點雲 聚焦

激光雷達是集激光、全球定位系統(GPS)、和IMU(慣性測量裝置)三種技術於一身的系統,相比普通雷達,激光雷達具有分辨率高,隱蔽性好、抗幹擾能力更強等優勢。隨著科技的不斷發展,激光雷達的應用越來越廣泛,在機器人、無人駕駛、無人車等領域都能看到它的身影,有需求必然會有市場,隨著激光雷達需求的不斷增大,激光雷達的種類也變得琳瑯滿目,按照使用功能、探測方式、載荷平臺等激光雷達可分為不同的類型。

技術分享圖片

激光雷達類型圖

激光雷達按功能分類:

激光測距雷達

激光測距雷達是通過對被測物體發射激光光束,並接收該激光光束的反射波,記錄該時間差,來確定被測物體與測試點的距離。傳統上,激光雷達可用於工業的安 全檢測領域,如科幻片中看到的激光墻,當有人闖入時,系統會立馬做出反應,發出預警。另外,激光測距雷達在空間測繪領域也有廣泛應用。但隨著人工智能行業的興起,激光測距雷達已成為機器人體內不可或缺的核心部件,配合SLAM技術使用,可幫助機器人進行實時定位導航,,實現自主行走。思嵐科技研制的rplidar系列配合slamware模塊使用是目前服務機器人自主定位導航的典型代表,其在25米測距半徑內,可完成每秒上萬次的激光測距,並實現毫米級別的解析度。

激光測速雷達

激光測速雷達是對物體移動速度的測量,通過對被測物體進行兩次有特定時間間隔的激光測距,從而得到該被測物體的移動速度。

激光雷達測速的方法主要有兩大類,一類是基於激光雷達測距原理實現,即以一定時間間隔連續測量目標距離,用兩次目標距離的差值除以時間間隔就可得知目標的速度值,速度的方向根據距離差值的正負就可以確定。這種方法系統結構簡單,測量精度有限,只能用於反射激光較強的硬目標。

另一類測速方法是利用多普勒頻移。多普勒頻移是指目標與激光雷達之間存在相對速度時,接收回波信號的頻率與發射信號的頻率之間會產生一個頻率差,這個頻率差就是多普勒頻移。

激光成像雷達

激光成像雷達可用於探測和跟蹤目標、獲得目標方位及速度信息等。它能夠完成普通雷達所不能完成的任務,如探測潛艇、水雷、隱藏的軍事目標等等。在軍事、航空航天、工業和醫學領域被廣泛應用。

大氣探測激光雷達

大氣探測激光雷達主要是用來探測大氣中的分子、煙霧的密度、溫度、風速、風向及大氣中水蒸氣的濃度的,以達到對大氣環境進行監測及對暴風雨、沙塵暴等災害性天氣進行預報的目的。

跟蹤雷達

跟蹤雷達可以連續的去跟蹤一個目標,並測量該目標的坐標,提供目標的運動軌跡。不僅用於火炮控制、導彈制導、外彈道測量、衛星跟蹤、突防技術研究等,而且在氣象、交通、科學研究等領域也在日益擴大。

按工作介質分類:

固體激光雷達

固體激光雷達峰值功率高,輸出波長範圍與現有的光學元件與器件,輸出長範圍與現有的光學元件與器件(如調制器、隔離器和探測器)以及大氣傳輸特性相匹配等,而且很容易實現主振蕩器-功率放大器(MOPA)結構,再加上效率高、體積小、重量輕、可靠性高和穩定性好等導體,固體激光雷達優先在機載和天基系統中應用。近年來,激光雷達發展的重點是二極管泵浦固體激光雷達。

氣體激光雷達

氣體激光雷達以CO2激光雷達為代表,它工作在紅外波段 ,大氣傳輸衰減小,探測距離遠,已經在大氣風場和環境監測方面發揮了很大作用,但體積大,使用的中紅外 HgCdTe探測器必須在77K溫度下工作,限制了氣體激光雷達的發展。

半導體激光雷達

半導體激光雷達能以高重復頻率方式連續工作,具有長壽命,小體積,低成本和對人眼傷害小的優點,被廣泛應用於後向散射信號比較強的Mie散射測量,如探測雲底高度。半導體激光雷達的潛在應用是測量能見度,獲得大氣邊界層中的氣溶膠消光廓線和識別雨雪等,易於制成機載設備。目前芬蘭Vaisala公司研制的CT25K激光測雲儀是半導體測雲激光雷達的典型代表,其雲底高度的測量範圍可達7500m。

按線數分類:

單線激光雷達

單線激光雷達主要用於規避障礙物,其掃描速度快、分辨率強、可靠性高。由於單線激光雷達比多線和3D激光雷達在角頻率和靈敏度反映更加快捷,所以,在測試周圍障礙物的距離和精度上都更加精 確。但是,單線雷達只能平面式掃描,不能測量物體高度,有一定局限性。當前主要應用於服務機器人身上,如我們常見的掃地機器人。

多線激光雷達

多線激光雷達主要應用於汽車的雷達成像,相比單線激光雷達在維度提升和場景還原上有了質的改變,可以識別物體的高度信息。多線激光雷達常規是2.5D,而且可以做到3D。目前在國際市場上推出的主要有 4線、8線、16 線、32 線和 64 線。但價格高昂,大多車企不會選用。

按掃描方式分類:

MEMS型激光雷達

MEMS 型激光雷達可以動態調整自己的掃描模式,以此來聚焦特殊物體,采集更遠更小物體的細節信息並對其進行識別,這是傳統機械激光雷達無法實現的。MEMS整套系統只需一個很小的反射鏡就能引導固定的激光束射向不同方向。由於反射鏡很小,因此其慣性力矩並不大,可以快速移動,速度快到可以在不到一秒時間裏跟蹤到 2D 掃描模式。

Flash型激光雷達

Flash型激光雷達能快速記錄整個場景,避免了掃描過程中目標或激光雷達移動帶來的各種麻煩,它運行起來比較像攝像頭。激光束會直接向各個方向漫射,因此只要一次快閃就能照亮整個場景。隨後,系統會利用微型傳感器陣列采集不同方向反射回來的激光束。Flash LiDAR有它的優勢,當然也存在一定的缺陷。當像素越大,需要處理的信號就會越多,如果將海量像素塞進光電探測器,必然會帶來各種幹擾,其結果就是精度的下降。

相控陣激光雷達

相控陣激光雷達搭載的一排發射器可以通過調整信號的相對相位來改變激光束的發射方向。目前大多數相控陣激光雷達還在實驗室裏呆著,而現在仍停留在旋轉式或 MEMS 激光雷達的時代,

機械旋轉式激光雷達

機械旋轉式激光雷達是發展比較早的激光雷達,目前技術比較成熟,但機械旋轉式激光雷達系統結構十分復雜,且各核心組件價格也都頗為昂貴,其中主要包括激光器、掃描器、光學組件、光電探測器、接收IC以及位置和導航器件等。由於硬件成本高,導致量產困難,且穩定性也有待提升,目前固態激光雷達成為很多公司的發展方向。

按探測方式分類:

直接探測激光雷達

直接探測型激光雷達的基本結構與激光測距機頗為相近。工作時,由發射系統發送一個信號,經目標反射後被接收系統收集,通過測量激光信號往返傳播的時間而確定目標的距離。至於目標的徑向速度,則可以由反射光的多普勒頻移來確定,也可以測量兩個或多個距離,並計算其變化率而求得速度。

相幹探測激光雷達

相幹探測型激光雷達有單穩與雙穩之分,在所謂單穩系統中,發送與接收信號共用一個光學孔徑,並由發送-接收開關隔離。而雙穩系統則包括兩個光學孔徑,分別供發送與接收信號使用,發送-接收開關自然不再需要,其余部分與單穩系統相同。

按激光發射波形分類:

連續型激光雷達

從激光的原理來看,連續激光就是一直有光出來,就像打開手電筒的開關,它的光會一直亮著(特殊情況除外)。連續激光是依靠持續亮光到待測高度,進行某個高度下數據采集。由於連續激光的工作特點,某時某刻只能采集到一個點的數據。因為風數據的不確定特性,用一點代表某個高度的風況,顯然有些片面。因此有些廠家折中的辦法是采取旋轉360度,在這個圓邊上面采集多點進行平均評估,顯然這是一個虛擬平面中的多點統計數據的概念。

脈沖型激光雷達

脈沖激光輸出的激光是不連續的,而是一閃一閃的。脈沖激光的原理是發射幾萬個的激光粒子,根據國際通用的多普勒原理,從這幾萬個激光粒子的反射情況來綜合評價某個高度的風況,這個是一個立體的概念,因此才有探測長度的理論。從激光的特性來看,脈沖激光要比連續激光測量的點位多幾十倍,更能夠精 確的反應出某個高度風況。

按載荷平臺分類:

機載激光雷達

機載激光雷達是將激光測距設備、GNSS設備和INS等設備緊密集成,以飛行平臺為載體,通過對地面進行掃描,記錄目標的姿態、位置和反射強度等信息,獲取地表的三維信息,並深入加工得到所需空間信息的技術。在軍民用領域都有廣泛的潛力和前景。機載激光雷達探測距離近,激光在大氣中傳輸時,能量受大氣影響而衰減,激光雷達的作用距離在20千米以內,尤其在惡劣氣候條件下,比如濃霧、大雨和煙、塵,作用距離會大大縮短,難以有效工作。大氣湍流也會不同程度上降低激光雷達的測量精度。

車載激光雷達

車載激光雷達又稱車載三維激光掃描儀,是一種移動型三維激光掃描系統,可以通過發射和接受激光束,分析激光遇到目標對象後的折返時間,計算出目標對象與車的相對距離,並利用收集的目標對象表面大量的密集點的三維坐標、反射率等信息,快速復建出目標的三維模型及各種圖件數據,建立三維點雲圖,繪制出環境地圖,以達到環境感知的目的。車載激光雷達在自動駕駛“造車”大潮中扮演的角色正越來越重要,諸如谷歌、百度、寶馬、博世、德爾福等企業,都在其自動駕駛系統中使用了激光雷達,帶動車載激光雷達產業迅速擴大。

地基激光雷達

地基激光雷達可以獲取林區的3D點雲信息,利用點雲信息提取單木位置和樹高,它不僅節省了人力和物力,還提高了提取的精度,具有其它遙感方式所無法比擬的優勢。通過對國內外該技術林業應用的分析和對該發明研究後期的結果驗證,未來將會在更大的研究區域利用該技術提取各種森林參數。

星載激光雷達

星載雷達采用衛星平臺,運行軌道高、觀測視野廣,可以觸及世界的每一個角落。為境外地區三維控制點和數字地面模型的獲取提供了新的途徑,無論對於國防或是科學研究都具有十分重大意義。星載激光雷達還具有觀察整個天體的能力,美國進行的月球和火星等探測計劃中都包含了星載激光雷達,其所提供的數據資料可用於制作天體的綜合三維地形圖。此外,星載激光雷達載植被垂直分布測量、海面高度測量、雲層和氣溶膠垂直分布測量以及特殊氣候現象監測等方面也可以發揮重要作用。

通過以上對激光雷達特點、原理、應用領域等介紹,相信大家也能大致了解各類激光雷達的不同屬性了,眼下,在激光雷達這個競爭越來越激烈的賽道上,打造低成本、可量產、的激光雷達是很多新創公司想要實現的夢想。但開發和量產激光雷達並不容易。豐富的行業經驗和可靠的技術才能保障其在這一波大潮中占據主導地位。

細數激光雷達的那些類型