1. 程式人生 > >第十七講 利用傅立葉級數求特解

第十七講 利用傅立葉級數求特解

一,幾何變換法,求傅立葉級數:

  • 假設f(t_{2})是週期T=2LL=1的函式,求它的傅立葉級數。如圖1:
  • 第一步,求週期T=2\pi的函式g(t_{1})的傅立葉級數。如圖2:
  • 因為g(t_{1})是奇函式,g(t_{1})=\sum_{n=1}^{\infty }b_{n}sin(nt_{1})
  • b_{n}=\frac{2}{\pi }\int_{0}^{\pi }g(t_{1})sin(nt_{1})dt_{1}=\frac{2}{\pi }\int_{0}^{\pi }sin(nt_{1})dt_{1}=\frac{2}{\pi }\int_{0}^{\pi }\frac{sin(nt_{1})}{n}dnt_{1}=\frac{2}{\pi }\cdot \left. [\frac{-cos(nt_{1})}{n}] \right |^{\pi }_{0}=\frac{2}{\pi }\cdot\frac{1-(-1)^{n}}{n}
  • n=1,3,5......b_{n}=\frac{4}{\pi n};當n=2,4,6......b_{n}=0
  • 因此g(t_{1})=\sum_{n=1}^{\infty }b_{n}sin(nt_{1})=\frac{4}{\pi }\sum_{n=1}^{\infty }\frac{sin(nt_{1})}{n},前提:n=1,3,5......
  • 第二步,將g(t_{1})壓縮成s(t_{2}),週期改變,t_{1}t_{2},如圖3:
  • s(t_{2})的週期T=2L=1,振幅是g(t_{1})的一半:s(t_{2})=\frac{1}{2}g(t_{1})
  • 基頻率k_{0}=\frac{2\pi }{T}=\pit_{1}=k_{0}t_{2}=\pi t_{2}
  • \pi t_{2}替換t_{1}s(t_{2})=\frac{1}{2}g(t_{1})=\frac{1}{2}\cdot\frac{4}{\pi }\sum_{n=1}^{\infty }\frac{sin(nt_{1})}{n}=\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(n\pi t_{2})}{n},前提:n=1,3,5......
  • 用上一節拓展1的公式驗證答案:
  1. 因為s(t_{2})是奇函式,s(t_{2})=\sum_{n=1}^{\infty }b_{n}sin(nk_{0}t_{2})=\sum_{n=1}^{\infty }b_{n}sin(n\pi t_{2})
  2. b_{n}=\frac{2}{L}\int_{0}^{L}s(t_{2})sin(nk_{0}t_{2})dt_{2}=2\int_{0}^{1}\frac{1}{2}sin(n\pi t_{2})dt_{2}=\int_{0}^{1}\frac{1}{n\pi }sin(n\pi t_{2})dn\pi t_{2}=-\frac{1}{n\pi }\cdot \left. cos(n\pi t_{2}) \right |^{1}_{0}=\frac{1-(-1)^{n}}{n\pi }
  3. n=1,3,5......b_{n}=\frac{2}{n\pi };當n=2,4,6......b_{n}=0
  4. 因此s(t_{2})=\sum_{n=1}^{\infty }b_{n}sin(n\pi t_{2})=\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(n\pi t_{2})}{n},前提:n=1,3,5......
  • 第三步,將圖3上移1/2變成圖1,週期沒變,t不變:
  • f(t_{2})=\frac{1}{2}+s(t_{2})=\frac{1}{2}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(n\pi t_{2})}{n},前提:n=1,3,5......

二,二階非齊次常係數線性ODE的輸入項為s(t_{2}),求特解x_{p}

  • 彈簧—質量—阻尼系統

  • 如圖
  • 標準形式:{x}''+\frac{c}{m}{x}'+\frac{k}{m}x=s(t_{2})
  • 設阻尼係數c=0,彈性常數\frac{k}{m}=\omega _{0}^{2}\omega _{0}表示彈簧振盪的角速度,\omega _{0}>0
  • 原方程化為:{x}''+\omega _{0}^{2}x=s(t_{2})
  • 不考慮奇偶性,s(t_{2})的週期T=2L,基頻率k_{0}=\frac{2\pi }{T}=2\pi k
  • s(t_{2})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty }[a_{n}cos(nk_{0}t_{2})+b_{n}sin(nk_{0}t_{2})],角速度\omega _{2}=nk_{0}

  • 原方程化為:{x}''+\omega _{0}^{2}x=\frac{a_{0}}{2}+\sum_{n=1}^{\infty }[a_{n}cos(\omega _{2}t_{2})+b_{n}sin(\omega _{2}t_{2})]

  • 複習第十四講 共振

    當驅動項f(t)=cos(\omega _{2}t)或者sin(\omega _{2}t)時:

    特解x_{p}=\frac{1}{\omega_{0} ^{2}-\omega _{2}^{2}}\cdot cos(\omega _{2}t)或者\frac{1}{\omega_{0} ^{2}-\omega _{2}^{2}}\cdot sin(\omega _{2}t)

    當驅動角速度\omega _{2}逼近彈簧角速度\omega _{0}時,產生共振

  • 疊加原理:x_{p}=\frac{a_{0}}{2\omega _{0}^{2}}+\sum_{n=1}^{\infty }[\frac{a_{n}cos(\omega _{2}t_{2})}{\omega _{0}^{2}-\omega _{2}^{2}}+\frac{b_{n}sin(\omega _{2}t_{2})}{\omega _{0}^{2}-\omega _{2}^{2}}]

  • 第一項:當\omega _{2}=0時,\frac{a_{0}}{2(\omega _{0}^{2}-\omega _{2}^{2})}=\frac{a_{0}}{2\omega _{0}^{2}}

三,假設輸入項為f(t_{2}),求特解x_{p}

  • f(t_{2})是奇函式,週期T=2f(t_{2})=\frac{1}{2}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(n\pi t_{2})}{n},前提:n=1,3,5......,角速度\omega _{2}=n\pi
  • 原方程化為:{x}''+\omega _{0}^{2}x=\frac{1}{2}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n}
  • 疊加原理:x_{p}=\frac{1}{2\omega _{0}^{2}}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n(\omega _{0}^{2}-\omega _{2}^{2})},前提:n=1,3,5......

四,分析x_{p}係數的大小:

  • 假設:\omega _{0}=10k_{0}=\pi =3
  • 已知:\omega _{2}=nk_{0}=n\pi =3nn=1,3,5......
  • x_{p}=\frac{1}{2\omega _{0}^{2}}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n(\omega _{0}^{2}-\omega _{2}^{2})}\approx \frac{1}{200}+\frac{2}{3}(\frac{sin(3t_{2})}{91}+\frac{sin(9t_{2})}{57}+\frac{sin(15t_{2})}{-625}+......)\approx 0.005+0.007sin(3t_{2})+0.012sin(9t_{2})-0.001sin(15t_{2})-......
  • 傅立葉係數表示某個角速度的波sin(\omega _{2}t_{2})在合成波f(t_{2})中佔的比重
  • 可以看到響應幅值最大的是角速度\omega _{2}=3\pi
  • 結論:當\omega _{0}=10時,近似的共振將會由輸入項f(t_{2})中的角速度\omega _{2}=3\pi的波產生
  • 原理:響應項不會對輸入項裡所有的波做出響應,它只會選出和它的角速度\omega _{0}接近(3\pi \approx 10)的波進行響應,其他的波都被淡化了。
  • 聲音在不同介質中的傳遞,是通過共振實現的。

五,待定係數法,求特解x_{p}

  • 假設輸入項為f(t_{2})=\frac{1}{2}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n}
  • 假設響應項x_{p}具有相同的形式:x_{p}=c_{0}+\sum_{n=1}^{\infty }c_{n}\cdot sin(\omega _{2}t_{2})c_{0}c_{n}為待定係數
  • {x_{p}}''=-\omega _{2}^{2}\sum_{n=1}^{\infty }c_{n}\cdot sin(\omega _{2}t_{2})
  • 原方程為:{x}''+\omega _{0}^{2}x=\frac{1}{2}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n}
  • x_{p}{x_{p}}''代入原方程:
  • -\omega _{2}^{2}\sum_{n=1}^{\infty }c_{n}\cdot sin(\omega _{2}t_{2})+\omega _{0}^{2}c_{0}+\omega _{0}^{2}\sum_{n=1}^{\infty }c_{n}\cdot sin(\omega _{2}t_{2})=\frac{1}{2}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n}
  • \omega _{0}^{2}c_{0}=\frac{1}{2}\Rightarrow c_{0}=\frac{1}{2\omega _{0}^{2}}
  • (\omega _{0}^{2}-\omega _{2}^{2})\sum_{n=1}^{\infty }c_{n}\cdot sin(\omega _{2}t_{2})=\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n}\Rightarrow (\omega _{0}^{2}-\omega _{2}^{2})c_{n}=\frac{2}{n\pi }\Rightarrow c_{n}=\frac{2}{n\pi (\omega _{0}^{2}-\omega _{2}^{2})}
  • 將係數c_{0}c_{n}代入響應項x_{p}
  • x_{p}=\frac{1}{2\omega _{0}^{2}}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n(\omega _{0}^{2}-\omega _{2}^{2})}