1. 程式人生 > >Linux異常中斷處理結構

Linux異常中斷處理結構

核心在start_kernel()函式(init/main.c)中會呼叫trap_init()個函式來設定異常的處理函式。

1、trap_init()函式

/*
	 * Copy the vectors, stubs and kuser helpers (in entry-armv.S)
	 * into the vector page, mapped at 0xffff0000, and ensure these
	 * are visible to the instruction stream.
	 */
	memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start);
	memcpy((void *)vectors + 0x200, __stubs_start, __stubs_end - __stubs_start);
	memcpy((void *)vectors + 0x1000 - kuser_sz, __kuser_helper_start, kuser_sz);

在trap_init()函式中會將異常向量表vectors中的內容拷貝到固定的地址0xffff0000。而__vectors_start又是哪裡來的呢?

/*arch/arm/kernel/entry-arm.S*/
__vectors_start:
	swi	SYS_ERROR0
	b	vector_und + stubs_offset
	ldr	pc, .LCvswi + stubs_offset
	b	vector_pabt + stubs_offset
	b	vector_dabt + stubs_offset
	b	vector_addrexcptn + stubs_offset
	b	vector_irq + stubs_offset
	b	vector_fiq + stubs_offset

       可以看到各種異常處理函式的入口都從__vectors_start開始。這裡我們以irq中斷舉例,繼續往下看當一箇中斷髮生是,流程會怎麼走。

       全域性搜尋了一下vector_irq關鍵字,我們都搜不到什麼東西,原來這是一個巨集。

vector_stub	irq, IRQ_MODE, 4

我們繼續看一下這個巨集定義裡面做了什麼

	.macro	vector_stub, name, mode, correction=0
	.align	5

vector_\name:
	.if \correction
	sub	lr, lr, #\correction
	.endif

	@
	@ Save r0, lr_<exception> (parent PC) and spsr_<exception>
	@ (parent CPSR)
	@
	stmia	sp, {r0, lr}		@ save r0, lr
	mrs	lr, spsr
	str	lr, [sp, #8]		@ save spsr

	@
	@ Prepare for SVC32 mode.  IRQs remain disabled.
	@
	mrs	r0, cpsr
	eor	r0, r0, #(\mode ^ SVC_MODE)
	msr	spsr_cxsf, r0

	@
	@ the branch table must immediately follow this code
	@
	and	lr, lr, #0x0f
	mov	r0, sp
	ldr	lr, [pc, lr, lsl #2]
	movs	pc, lr			@ branch to handler in SVC mode
	.endm

大概就是計算返回地址、儲存上下文和跳轉到下一個處理的函式,根據不同情況會跳轉到__irq_usr或者__irq_svc。

	.long	__irq_usr			@  0  (USR_26 / USR_32)
	.long	__irq_invalid			@  1  (FIQ_26 / FIQ_32)
	.long	__irq_invalid			@  2  (IRQ_26 / IRQ_32)
	.long	__irq_svc			@  3  (SVC_26 / SVC_32)
	.long	__irq_invalid			@  4
	.long	__irq_invalid			@  5
	.long	__irq_invalid			@  6
	.long	__irq_invalid			@  7
	.long	__irq_invalid			@  8
	.long	__irq_invalid			@  9
	.long	__irq_invalid			@  a
	.long	__irq_invalid			@  b
	.long	__irq_invalid			@  c
	.long	__irq_invalid			@  d
	.long	__irq_invalid			@  e
	.long	__irq_invalid			@  f

假如跳轉到__irq_usr的話:

__irq_usr:
	usr_entry

#ifdef CONFIG_TRACE_IRQFLAGS
	bl	trace_hardirqs_off
#endif
	get_thread_info tsk
#ifdef CONFIG_PREEMPT
	ldr	r8, [tsk, #TI_PREEMPT]		@ get preempt count
	add	r7, r8, #1			@ increment it
	str	r7, [tsk, #TI_PREEMPT]
#endif

	irq_handler
#ifdef CONFIG_PREEMPT
	ldr	r0, [tsk, #TI_PREEMPT]
	str	r8, [tsk, #TI_PREEMPT]
	teq	r0, r7
	strne	r0, [r0, -r0]
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
	bl	trace_hardirqs_on
#endif

	mov	why, #0
	b	ret_to_user

	.ltorg

也是一堆的彙編程式碼,我們關注irq_handler函式就好了,也是一個巨集定義:

	.macro	irq_handler
	get_irqnr_preamble r5, lr
1:	get_irqnr_and_base r0, r6, r5, lr
	movne	r1, sp
	@
	@ routine called with r0 = irq number, r1 = struct pt_regs *
	@
	adrne	lr, 1b
	bne	asm_do_IRQ

       上面的程式碼最終會走到asm_do_IRQ()。這是一個C語言書寫的函式,下面就看一下,這個函式裡面具體做了什麼事情。以前我們寫的微控制器程式處理中斷服務的流程大概是這樣的:

(1)判斷是哪一個中斷

(2)呼叫相應的中斷處理函式

(3)清中斷

在Linux系統裡面處理中斷的流程也大同小異,下面就看一下asm_do_IRQ()怎麼處理irq中斷的

/*arch\arm\kernel\irq.c*/
asmlinkage void __exception asm_do_IRQ(unsigned int irq, struct pt_regs *regs)
{
	struct pt_regs *old_regs = set_irq_regs(regs);
	struct irq_desc *desc = irq_desc + irq;

	/*
	 * Some hardware gives randomly wrong interrupts.  Rather
	 * than crashing, do something sensible.
	 */
	if (irq >= NR_IRQS)
		desc = &bad_irq_desc;

	irq_enter();

	desc_handle_irq(irq, desc);

	/* AT91 specific workaround */
	irq_finish(irq);

	irq_exit();
	set_irq_regs(old_regs);
}

根據傳進來的中斷號irq,選擇相應的中斷服務desc = irq_desc + irq。然後就傳遞到desc_handle_irq(irq, desc)

/*include/asm-arm\mach\irq.h*/
static inline void desc_handle_irq(unsigned int irq, struct irq_desc *desc)
{
	desc->handle_irq(irq, desc);
}

可以看到這裡呼叫了處理irq中斷的服務程式,那麼一開始是在哪裡設定好這些中斷服務程式的呢?

/*
 * kernel\irq\chip.c
 */
void
__set_irq_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained,
		  const char *name)
{
	struct irq_desc *desc;
	unsigned long flags;

	if (irq >= NR_IRQS) {
		printk(KERN_ERR
		       "Trying to install type control for IRQ%d\n", irq);
		return;
	}

	desc = irq_desc + irq;

	if (!handle)
		handle = handle_bad_irq;
	else if (desc->chip == &no_irq_chip) {
		printk(KERN_WARNING "Trying to install %sinterrupt handler "
		       "for IRQ%d\n", is_chained ? "chained " : "", irq);
		/*
		 * Some ARM implementations install a handler for really dumb
		 * interrupt hardware without setting an irq_chip. This worked
		 * with the ARM no_irq_chip but the check in setup_irq would
		 * prevent us to setup the interrupt at all. Switch it to
		 * dummy_irq_chip for easy transition.
		 */
		desc->chip = &dummy_irq_chip;
	}

	spin_lock_irqsave(&desc->lock, flags);

	/* Uninstall? */
	if (handle == handle_bad_irq) {
		if (desc->chip != &no_irq_chip)
			mask_ack_irq(desc, irq);
		desc->status |= IRQ_DISABLED;
		desc->depth = 1;
	}
	desc->handle_irq = handle;
	desc->name = name;

	if (handle != handle_bad_irq && is_chained) {
		desc->status &= ~IRQ_DISABLED;
		desc->status |= IRQ_NOREQUEST | IRQ_NOPROBE;
		desc->depth = 0;
		desc->chip->unmask(irq);
	}
	spin_unlock_irqrestore(&desc->lock, flags);
}

       從上面的程式碼可以看出來,根據中斷號,找到對應的中斷服務描述結構體desc = irq_desc + irq,然後desc->handle_irq指向了相應的處理函式handle,這個是傳遞給__set_irq_handler函式的引數,繼續看一下是誰傳遞handle過來的?

/*
 * include\linux\irq.h
 */
static inline void
set_irq_handler(unsigned int irq, irq_flow_handler_t handle)
{
	__set_irq_handler(irq, handle, 0, NULL);
}

繼續跟蹤set_irq_handler()是哪裡呼叫的:

/*
 * arch\arm\plat-s3c24xx\irq.c
 */
void __init s3c24xx_init_irq(void)
{
	unsigned long pend;
	unsigned long last;
	int irqno;
	int i;


	此處省略很多程式碼...


	/* external interrupts */

	for (irqno = IRQ_EINT0; irqno <= IRQ_EINT3; irqno++) {
		irqdbf("registering irq %d (ext int)\n", irqno);
		set_irq_chip(irqno, &s3c_irq_eint0t4);
		set_irq_handler(irqno, handle_edge_irq);
		set_irq_flags(irqno, IRQF_VALID);
	}

	for (irqno = IRQ_EINT4; irqno <= IRQ_EINT23; irqno++) {
		irqdbf("registering irq %d (extended s3c irq)\n", irqno);
		set_irq_chip(irqno, &s3c_irqext_chip);
		set_irq_handler(irqno, handle_edge_irq);
		set_irq_flags(irqno, IRQF_VALID);
	}

	/* register the uart interrupts */

	irqdbf("s3c2410: registering external interrupts\n");

	for (irqno = IRQ_S3CUART_RX0; irqno <= IRQ_S3CUART_ERR0; irqno++) {
		irqdbf("registering irq %d (s3c uart0 irq)\n", irqno);
		set_irq_chip(irqno, &s3c_irq_uart0);
		set_irq_handler(irqno, handle_level_irq);
		set_irq_flags(irqno, IRQF_VALID);
	}

	for (irqno = IRQ_S3CUART_RX1; irqno <= IRQ_S3CUART_ERR1; irqno++) {
		irqdbf("registering irq %d (s3c uart1 irq)\n", irqno);
		set_irq_chip(irqno, &s3c_irq_uart1);
		set_irq_handler(irqno, handle_level_irq);
		set_irq_flags(irqno, IRQF_VALID);
	}

	for (irqno = IRQ_S3CUART_RX2; irqno <= IRQ_S3CUART_ERR2; irqno++) {
		irqdbf("registering irq %d (s3c uart2 irq)\n", irqno);
		set_irq_chip(irqno, &s3c_irq_uart2);
		set_irq_handler(irqno, handle_level_irq);
		set_irq_flags(irqno, IRQF_VALID);
	}

	for (irqno = IRQ_TC; irqno <= IRQ_ADC; irqno++) {
		irqdbf("registering irq %d (s3c adc irq)\n", irqno);
		set_irq_chip(irqno, &s3c_irq_adc);
		set_irq_handler(irqno, handle_edge_irq);
		set_irq_flags(irqno, IRQF_VALID);
	}

	irqdbf("s3c2410: registered interrupt handlers\n");

       由上面可以看出來,在初始化s3c24xx單板的irq中斷服務時,就會為不同的外部中斷號註冊相應的中斷處理函式,比如外部中斷號IRQ_EINT0~IRQ_EINT3,就註冊了中斷處理函式handle_edge_irq()。至此,我們終於跟蹤到了最初那個handle_irq函式是怎麼來的了,就是一開始初始化的時候註冊的。

        接下來再看一下,中斷服務處理函式handle_edge_irq()裡面做的事情:

/*
 * kernel\irq\chip.c
 */
void fastcall
handle_edge_irq(unsigned int irq, struct irq_desc *desc)
{

    省略一部分程式碼...	

	/* Start handling the irq */
	desc->chip->ack(irq);

	/* Mark the IRQ currently in progress.*/
	desc->status |= IRQ_INPROGRESS;

	do {
		struct irqaction *action = desc->action;
		irqreturn_t action_ret;

		if (unlikely(!action)) {
			desc->chip->mask(irq);
			goto out_unlock;
		}

		/*
		 * When another irq arrived while we were handling
		 * one, we could have masked the irq.
		 * Renable it, if it was not disabled in meantime.
		 */
		if (unlikely((desc->status &
			       (IRQ_PENDING | IRQ_MASKED | IRQ_DISABLED)) ==
			      (IRQ_PENDING | IRQ_MASKED))) {
			desc->chip->unmask(irq);
			desc->status &= ~IRQ_MASKED;
		}

		desc->status &= ~IRQ_PENDING;
		spin_unlock(&desc->lock);
		action_ret = handle_IRQ_event(irq, action);
		if (!noirqdebug)
			note_interrupt(irq, desc, action_ret);
		spin_lock(&desc->lock);

	} while ((desc->status & (IRQ_PENDING | IRQ_DISABLED)) == IRQ_PENDING);

	desc->status &= ~IRQ_INPROGRESS;
out_unlock:
	spin_unlock(&desc->lock);
}

(1)呼叫desc->chip結構體中的函式來清中斷、遮蔽或者重新使能中斷

(2)然後呼叫handle_IRQ_event()函式去處理中斷的事件:

/*
 *kernel\irq\handle.c
 */
irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
{
	此處省略一些程式碼...

	do {
		ret = action->handler(irq, action->dev_id);
		if (ret == IRQ_HANDLED)
			status |= action->flags;
		retval |= ret;
		action = action->next;
	} while (action);

	此處省略一些程式碼...

	return retval;
}

       可以看出來action是一個連結串列頭,指向的是我們註冊的中斷處理函式,也就是我們使用request_irq()函式註冊的中斷處理函式,註冊時我們需要帶上相應的irq中斷號,然後我們的處理函式就根據irq中斷號,把我們的處理函式掛到不同的連結串列下面: