1. 程式人生 > >吳恩達DeepLearning.ai系列課後程式設計題實踐總結week3

吳恩達DeepLearning.ai系列課後程式設計題實踐總結week3

# -*- coding: utf-8 -*-
"""
Created on Sun Sep 24 09:09:10 2017

@author: Jay
"""

import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

#將那些用matplotlib繪製的圖顯示在頁面裡而不是彈出一個視窗:%matplotlib inline
np.random.seed(1) X, Y = load_planar_dataset() #plt.scatter(X[0, :], X[1, :], c=Y, s=20, cmap=plt.cm.Spectral) ''' clf=sklearn.linear_model.LogisticRegressionCV(); clf.fit(X.T,Y.T); plot_decision_boundary(lambda x:clf.predict(x),X,Y) plt.title('Logistic Regression') LR_predictions=clf.predict(X.T) print('Accuracy of logistic regression: %d' %float((np.dot(Y,LR_predictions)+\ np.dot(1-Y,1-LR_predictions))/float(Y.size)*100)+'%') '''
def layer_sizes(X,Y): n_x=X.shape[0] n_h=4 n_y=Y.shape[0] return(n_x,n_h,n_y) def initialize_parameters(n_x, n_h, n_y): np.random.seed(2) W1=np.random.randn(n_h,n_x)*0.01 b1=np.zeros((n_h,1)) W2=np.random.randn(n_y,n_h)*0.01 b2=np.zeros((n_y,1)) assert (W1.shape == (n_h, n_x)) assert
(b1.shape == (n_h, 1)) assert (W2.shape == (n_y, n_h)) assert (b2.shape == (n_y, 1)) parameters={'W1':W1, 'b1':b1, 'W2':W2, 'b2':b2} return parameters def forward_propagation(X,parameters): W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] Z1=np.dot(W1,X)+b1 A1=np.tanh(Z1) Z2=np.dot(W2,A1)+b2 A2=sigmoid(Z2) assert(A2.shape==(1,X.shape[1])) cache={'Z1':Z1, 'A1':A1, 'Z2':Z2, 'A2':A2} return A2,cache '''X_assess,parameters=forward_propagation_test_case() A2,cache=forward_propagation(X_assess,parameters) print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2']))''' def compute_cost(A2,Y,parameters): m=Y.shape[1] W1=parameters['W1'] W2=parameters['W2'] cost =-(float(np.dot(np.log(A2),Y.T))+np.dot(np.log(1.-A2),(1.-Y).T))/m #logprobs = np.multiply(np.log(A2),Y) #cost = - np.sum(np.multiply(np.log(A2), Y) + np.multiply(np.log(1. - A2), 1. - Y)) / m cost = np.squeeze(cost) #assert(isinstance(cost,float)) return cost #A2,Y_assess,parameters=compute_cost_test_case() #print('cost=' + str(compute_cost(A2,Y_assess,parameters))) def backward_propagation(parameters,cache,X,Y): m=X.shape[1] W1=parameters['W1'] W2=parameters['W2'] A1=cache['A1'] A2=cache['A2'] dZ2=A2-Y dW2=np.dot(dZ2,A1.T)/m db2=np.sum(dZ2,axis=1,keepdims=True)/m dZ1=np.dot(W2.T,dZ2)*(1-A1**2) dW1=np.dot(dZ1,X.T)/m db1=np.sum(dZ1,axis=1,keepdims=True)/m grads={'dW1':dW1, 'db1':db1, 'dW2':dW2, 'db2':db2} return grads parameters, cache, X_assess, Y_assess = backward_propagation_test_case() ''' grads = backward_propagation(parameters, cache, X_assess, Y_assess) print ("dW1 = "+ str(grads["dW1"])) print ("db1 = "+ str(grads["db1"])) print ("dW2 = "+ str(grads["dW2"])) print ("db2 = "+ str(grads["db2"])) ''' def update_parameters(parameters, grads, learning_rate = 1.2): W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] dW1 = grads['dW1'] db1 = grads['db1'] dW2 = grads['dW2'] db2 = grads['db2'] W1 = W1 - learning_rate * dW1 b1 = b1 - learning_rate * db1 W2 = W2 - learning_rate * dW2 b2 = b2 - learning_rate * db2 parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters def nn_model(X,Y,n_h,num_iterations=10000,print_cost=False): np.random.seed(3) n_x=layer_sizes(X,Y)[0] n_y=layer_sizes(X,Y)[2] parameters=initialize_parameters(n_x,n_h,n_y) W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] for i in range(0, num_iterations): A2, cache = forward_propagation(X, parameters) cost = compute_cost(A2, Y, parameters) grads = backward_propagation(parameters, cache, X, Y) parameters = update_parameters(parameters, grads) if i % 1000 == 0: print ("Cost after iteration %i: %f" %(i, cost)) return parameters ''' X_assess, Y_assess = nn_model_test_case() parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ''' def predict(parameters,X): A2,cache=forward_propagation(X,parameters) predictions=np.array([0 if i<=0.5 else 1 for i in np.squeeze(A2)]) return predictions ''' parameters, X_assess = predict_test_case() predictions = predict(parameters, X_assess) print("predictions mean = " + str(np.mean(predictions))) ''' ''' parameters = nn_model(X, Y, n_h = 4, num_iterations = 20000, print_cost=True) plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y) plt.title("Decision Boundary for hidden layer size " + str(4)) predictions = predict(parameters, X) print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%') plt.figure(figsize=(16, 32)) hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] for i, n_h in enumerate(hidden_layer_sizes): #列舉 plt.subplot(5, 2, i+1) plt.title('Hidden Layer of size %d' % n_h) parameters = nn_model(X, Y, n_h, num_iterations = 5000) plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y) predictions = predict(parameters, X) accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy)) ''' noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets() datasets = {"noisy_circles": noisy_circles, "noisy_moons": noisy_moons, "blobs": blobs, "gaussian_quantiles": gaussian_quantiles} for i,j in datasets.items():#遍歷字典,對每一個型別算一遍 dataset = "j" X, Y = j X,Y=X.T,Y.reshape(1,Y.shape[0]) if dataset=='blobs': Y=Y%2 #plt.scatter(X[0,:],X[1,:],c=Y,s=40,cmap=plt.cm.Spectral); parameters=nn_model(X,Y,5,num_iterations=10000) predictions=predict(parameters,X) accuracy=float((np.dot(Y,predictions.T)+np.dot(1.-Y,1.-predictions.T))/Y.size*100) print('accuracy for {} is:{}%'.format(i,accuracy)) print('***************************')