1. 程式人生 > >hdu 1081 To The Max(最大子矩陣和)

hdu 1081 To The Max(最大子矩陣和)

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7533    Accepted Submission(s): 3647


Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.

Input The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output Output the sum of the maximal sub-rectangle.

Sample Input 4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output 15

動態規劃求最大子矩陣和,把二維的轉化為一維的就好做了。

1、首先看一位陣列a[]求最大欄位和,b記錄以i結尾的陣列最大欄位和;

顯然若b<0(此時儲存的是以i-1為結尾的最大和),有b=a[i];  否則b+=a[i]; 

2、轉化為一維的陣列就是列舉某一連續幾行,把每一列的值加起來存到一個元素中,

這些元素就構成了一個一維陣列。

然後,按照一維陣列求最大欄位和的方法求解即可。

#include"stdio.h"
#include"math.h"
#include"string.h"
#define N 105
int Maxsum(int a[],int m)
{                         //求一維陣列的最大欄位和
	int i,s=0,max=a[0];
	for(i=0;i<m;i++)
	{
		if(s>=0)
			s+=a[i];
		else
			s=a[i];
		if(s>max)
			max=s;
	}
	return max;
}
int main()
{
	int n,i,j,k;
	int b[N];
	int a[N][N];
	while(scanf("%d",&n)!=-1)
	{
		for(i=0;i<n;i++)
			for(j=0;j<n;j++)
				scanf("%d",&a[i][j]);
		int max=a[0][0];
		for(i=0;i<n;i++)    
		{
			memset(b,0,sizeof(b));
			for(j=i;j<n;j++)        //從某一行開始加到末行
			{
				for(k=0;k<n;k++)         //求解相加過程中的最大欄位和
					b[k]+=a[j][k];
				int t=Maxsum(b,n);
				if(t>max)
					max=t;
			}
		}
		printf("%d\n",max);
	}
	return 0;
}