1. 程式人生 > >Android記憶體優化六:系統中使用堆和棧管理記憶體的區別

Android記憶體優化六:系統中使用堆和棧管理記憶體的區別

一直對系統中堆和棧的使用原則不太理解,在網上看到這篇文章,非常不錯!

轉載地址:http://bbs.csdn.net/topics/390147637

在計算機領域,堆疊是一個不容忽視的概念,我們編寫的C語言程式基本上都要用到。但對於很多的初學著來說,堆疊是一個很模糊的概念。堆疊:一種資料結構、一個在程式執行時用於存放的地方,這可能是很多初學者的認識,因為我曾經就是這麼想的和組合語言中的堆疊一詞混為一談。我身邊的一些程式設計的朋友以及在網上看帖遇到的朋友中有好多也說不清堆疊,所以我想有必要給大家分享一下我對堆疊的看法,有說的不對的地方請朋友們不吝賜教,這對於大家學習會有很大幫助。

       首先在資料結構上要知道堆疊,儘管我們這麼稱呼它,但實際上堆疊是兩種資料結構:堆和棧。

       堆和棧都是一種資料項按序排列的資料結構。

       我們先從大家比較熟悉的棧說起吧,它是一種具有後進先出性質的資料結構,也就是說後存放的先取,先存放的後取。這就如同我們要取出放在箱子裡面底下的東西(放入的比較早的物體),我們首先要移開壓在它上面的物體(放入的比較晚的物體)。而堆就不同了,堆是一種經過排序的樹形資料結構,每個結點都有一個值。通常我們所說的堆的資料結構,是指二叉堆。堆的特點是根結點的值最小(或最大),且根結點的兩個子樹也是一個堆。由於堆的這個特性,常用來實現優先佇列,堆的存取是隨意,這就如同我們在圖書館的書架上取書,雖然書的擺放是有順序的,但是我們想取任意一本時不必像棧一樣,先取出前面所有的書,書架這種機制不同於箱子,我們可以直接取出我們想要的書。

       然而我要說的重點並不在這,我要說的堆和棧並不是資料結構的堆和棧,之所以要說資料結構的堆和棧是為了和後面我要說的堆區和棧區區別開來,請大家一定要注意。

下面就說說C語言程式記憶體分配中的堆和棧,這裡有必要把記憶體分配也提一下,大家不要嫌我囉嗦,一般情況下程式存放在Rom或Flash中,執行時需要拷到記憶體中執行,記憶體會分別儲存不同的資訊,如下圖所示:

圖暫時找不到了

       記憶體中的棧區處於相對較高的地址以地址的增長方向為上的話,棧地址是向下增長的,棧中分配區域性變數空間,堆區是向上增長的用於分配程式設計師申請的記憶體空間。另外還有靜態區是分配靜態變數,全域性變數空間的;只讀區是分配常量和程式程式碼空間的;以及其他一些分割槽。

來看一個網上很流行的經典例子:
main.cpp 
  int a = 0; 全域性初始化區 
  char *p1; 全域性未初始化區 
  main() 
  { 
  int b; 棧 
  char s[] = "abc"; 棧 
  char *p2; 棧 
  char *p3 = "123456"; 123456\0在常量區,p3在棧上。 
  static int c =0; 全域性(靜態)初始化區 
  p1 = (char *)malloc(10);  堆
  p2 = (char *)malloc(20);  堆
  } 
  
       不知道你是否有點明白了,堆和棧的第一個區別就是申請方式不同:棧(英文名稱是stack)是系統自動分配空間的,例如我們定義一個 char a;系統會自動在棧上為其開闢空間。而堆(英文名稱是heap)則是程式設計師根據需要自己申請的空間,例如malloc(10);開闢十個位元組的空間。由於棧上的空間是自動分配自動回收的,所以棧上的資料的生存週期只是在函式的執行過程中,執行後就釋放掉,不可以再訪問。而堆上的資料只要程式設計師不釋放空間,就一直可以訪問到,不過缺點是一旦忘記釋放會造成記憶體洩露。還有其他的一些區別我認為網上的朋友總結的不錯這裡轉述一下:

1.申請後系統的響應 
  棧:只要棧的剩餘空間大於所申請空間,系統將為程式提供記憶體,否則將報異常提示棧溢位。 
  堆:首先應該知道作業系統有一個記錄空閒記憶體地址的連結串列,當系統收到程式的申請時,會遍歷該連結串列,尋找第一個空間大於所申請空間的堆結點,然後將該結點從空閒結點連結串列中刪除,並將該結點的空間分配給程式,另外,對於大多數系統,會在這塊記憶體空間中的首地址處記錄本次分配的大小,這樣,程式碼中的 delete語句才能正確的釋放本記憶體空間。另外,由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多餘的那部分重新放入空閒連結串列中。
       也就是說堆會在申請後還要做一些後續的工作這就會引出申請效率的問題 

2.申請效率的比較
  棧由系統自動分配,速度較快。但程式設計師是無法控制的。 
  堆是由new分配的記憶體,一般速度比較慢,而且容易產生記憶體碎片,不過用起來最方便. 

3.申請大小的限制 
  棧:在Windows下,棧是向低地址擴充套件的資料結構,是一塊連續的記憶體的區域。這句話的意思是棧頂的地址和棧的最大容量是系統預先規定好的,在 WINDOWS下,棧的大小是2M(也有的說是1M,總之是一個編譯時就確定的常數),如果申請的空間超過棧的剩餘空間時,將提示overflow。因此,能從棧獲得的空間較小。 
  堆:堆是向高地址擴充套件的資料結構,是不連續的記憶體區域。這是由於系統是用連結串列來儲存的空閒記憶體地址的,自然是不連續的,而連結串列的遍歷方向是由低地址向高地址。堆的大小受限於計算機系統中有效的虛擬記憶體。由此可見,堆獲得的空間比較靈活,也比較大。 
   
4.堆和棧中的儲存內容 
  棧: 在函式呼叫時,第一個進棧的是主函式中函式呼叫後的下一條指令(函式呼叫語句的下一條可執行語句)的地址,然後是函式的各個引數,在大多數的C編譯器中,引數是由右往左入棧的,然後是函式中的區域性變數。注意靜態變數是不入棧的。 
  當本次函式呼叫結束後,區域性變數先出棧,然後是引數,最後棧頂指標指向最開始存的地址,也就是主函式中的下一條指令,程式由該點繼續執行。 
  堆:一般是在堆的頭部用一個位元組存放堆的大小。堆中的具體內容有程式設計師安排。 

5.存取效率的比較 
  char s1[] = "aaaaaaaaaaaaaaa"; 
  char *s2 = "bbbbbbbbbbbbbbbbb"; 
  aaaaaaaaaaa是在執行時刻賦值的; 
  而bbbbbbbbbbb是在編譯時就確定的; 
  但是,在以後的存取中,在棧上的陣列比指標所指向的字串(例如堆)快。 
  比如: 
  #include 
  void main() 
  { 
  char a = 1; 
  char c[] = "1234567890"; 
  char *p ="1234567890"; 
  a = c[1]; 
  a = p[1]; 
  return; 
  } 
  對應的彙編程式碼 
  10: a = c[1]; 
  00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh] 
  0040106A 88 4D FC mov byte ptr [ebp-4],cl 
  11: a = p[1]; 
  0040106D 8B 55 EC mov edx,dword ptr [ebp-14h] 
  00401070 8A 42 01 mov al,byte ptr [edx+1] 
  00401073 88 45 FC mov byte ptr [ebp-4],al

       堆和棧的區別可以引用一位前輩的比喻來看出: 
  
       使用棧就象我們去飯館裡吃飯,只管點菜(發出申請)、付錢、和吃(使用),吃飽了就走,不必理會切菜、洗菜等準備工作和洗碗、刷鍋等掃尾工作,他的好處是快捷,但是自由度小。 
  
       使用堆就象是自己動手做喜歡吃的菜餚,比較麻煩,但是比較符合自己的口味,而且自由度大。比喻很形象,說的很通俗易懂,不知道你是否有點收穫。

另一篇關於堆和棧的不同:http://blog.csdn.net/goingup/archive/2006/03/07/618309.aspx

堆與棧的區分問題,似乎是一個永恆的話題,由此可見,初學者對此往往是混淆不清的,所以我決定拿他第一個開刀。
      首先,我們舉一個例子:
      void f() { int* p=new int[5]; } 
      這條短短的一句話就包含了堆與棧,看到new,我們首先就應該想到,我們分配了一塊堆記憶體,那麼指標p呢?他分配的是一塊棧記憶體,所以這句話的意思就是:在棧記憶體中存放了一個指向一塊堆記憶體的指標p。在程式會先確定在堆中分配記憶體的大小,然後呼叫operator new分配記憶體,然後返回這塊記憶體的首地址,放入棧中,他在VC6下的彙編程式碼如下:
      00401028     push          14h


      0040102A     call          operator new (00401060)
      0040102F     add           esp,4
      00401032     mov           dword ptr [ebp-8],eax
      00401035     mov           eax,dword ptr [ebp-8]
      00401038     mov           dword ptr [ebp-4],eax
      這裡,我們為了簡單並沒有釋放記憶體,那麼該怎麼去釋放呢?是delete p麼?澳,錯了,應該是delete []p,這是為了告訴編譯器:我刪除的是一個數組,VC6就會根據相應的Cookie資訊去進行釋放記憶體的工作。
      好了,我們回到我們的主題:堆和棧究竟有什麼區別? 
      主要的區別由以下幾點:
      1、管理方式不同;
      2、空間大小不同;
      3、能否產生碎片不同;
      4、生長方向不同;
      5、分配方式不同;
      6、分配效率不同;
      管理方式:對於棧來講,是由編譯器自動管理,無需我們手工控制;對於堆來說,釋放工作由程式設計師控制,容易產生memory leak。
      空間大小:一般來講在32位系統下,堆記憶體可以達到4G的空間,從這個角度來看堆記憶體幾乎是沒有什麼限制的。但是對於棧來講,一般都是有一定的空間大小的,例如,在VC6下面,預設的棧空間大小是1M(好像是,記不清楚了)。當然,我們可以修改:    
      開啟工程,依次操作選單如下:Project->Setting->Link,在Category 中選中Output,然後在Reserve中設定堆疊的最大值和commit。
注意:reserve最小值為4Byte;commit是保留在虛擬記憶體的頁檔案裡面,它設定的較大會使棧開闢較大的值,可能增加記憶體的開銷和啟動時間。
      碎片問題:對於堆來講,頻繁的new/delete勢必會造成記憶體空間的不連續,從而造成大量的碎片,使程式效率降低。對於棧來講,則不會存在這個問題,因為棧是先進後出的佇列,他們是如此的一一對應,以至於永遠都不可能有一個記憶體塊從棧中間彈出,在他彈出之前,在他上面的後進的棧內容已經被彈出,詳細的可以參考資料結構,這裡我們就不再一一討論了。
      生長方向:對於堆來講,生長方向是向上的,也就是向著記憶體地址增加的方向;對於棧來講,它的生長方向是向下的,是向著記憶體地址減小的方向增長。
      分配方式:堆都是動態分配的,沒有靜態分配的堆。棧有2種分配方式:靜態分配和動態分配。靜態分配是編譯器完成的,比如區域性變數的分配。動態分配由alloca函式進行分配,但是棧的動態分配和堆是不同的,他的動態分配是由編譯器進行釋放,無需我們手工實現。
      分配效率:棧是機器系統提供的資料結構,計算機會在底層對棧提供支援:分配專門的暫存器存放棧的地址,壓棧出棧都有專門的指令執行,這就決定了棧的效率比較高。堆則是C/C++函式庫提供的,它的機制是很複雜的,例如為了分配一塊記憶體,庫函式會按照一定的演算法(具體的演算法可以參考資料結構/作業系統)在堆記憶體中搜索可用的足夠大小的空間,如果沒有足夠大小的空間(可能是由於記憶體碎片太多),就有可能呼叫系統功能去增加程式資料段的記憶體空間,這樣就有機會分到足夠大小的記憶體,然後進行返回。顯然,堆的效率比棧要低得多。
      從這裡我們可以看到,堆和棧相比,由於大量new/delete的使用,容易造成大量的記憶體碎片;由於沒有專門的系統支援,效率很低;由於可能引發使用者態和核心態的切換,記憶體的申請,代價變得更加昂貴。所以棧在程式中是應用最廣泛的,就算是函式的呼叫也利用棧去完成,函式呼叫過程中的引數,返回地址,EBP和區域性變數都採用棧的方式存放。所以,我們推薦大家儘量用棧,而不是用堆。
      雖然棧有如此眾多的好處,但是由於和堆相比不是那麼靈活,有時候分配大量的記憶體空間,還是用堆好一些。
      無論是堆還是棧,都要防止越界現象的發生(除非你是故意使其越界),因為越界的結果要麼是程式崩潰,要麼是摧毀程式的堆、棧結構,產生以想不到的結果,就算是在你的程式執行過程中,沒有發生上面的問題,你還是要小心,說不定什麼時候就崩掉,那時候debug可是相當困難的:)
      對了,還有一件事,如果有人把堆疊合起來說,那它的意思是棧,可不是堆,呵呵,清楚了?