由於上上篇部落格寫了使用tensorflow實現2D小波變化dwt和小波逆變換idwt,但是實現的方法在速度上和資源佔用上實在堪憂,特別是在channel比較大的情況下。因此本人對於上次的程式碼進行了優化。

優化主要表現在兩個方面:

  1. 去掉原來用於調整尺寸的for迴圈結構,使用tf.slice等命令代替;
  2. 去掉原來的迴圈卷積結構,使用tensorflow3D卷積代替

分析

上述的兩種操作之所以能夠節省計算資源,提升速度。原因在於,tensorflow會在反向傳播的時候儲存下來每一個tensor操作的結果。例如,for迴圈64個tf.concat,那麼tensorflow就會儲存64個concat的反向梯度圖,分別為tf.concat_1…tf.concat_64(表述可能不嚴謹),儲存的這些結果都會佔用大量的計算資源,而這些對於計算並不是必要的。因此要節省計算資源,就是要使用盡量少的tensor操作來實現功能。tensorflow提供的tf.slice命令就可以完全替代原來迴圈的tf.concat結構,而反向傳播中只佔用了原來迴圈一次的資源。同樣的道理迴圈的卷積也是如此,雖然3D卷積也是消耗資源的,但是,相比之下還是優於迴圈結構的。
另外:此次的程式碼和上次還有一個小的區別,調整了卷積核的尺寸,實現DWT的同時加速。原來預設的基為db3,卷積核的尺寸為6,調整後的預設基為haar,卷積核尺寸為2。讀者可以根據自己的需要給定基。

程式碼

# -*- coding: utf-8 -*-
# @Author   : Cmy
# @time     : 2018/12/5 20:37
# @File     : tf_dwt_3d_v2.py
# @Software : PyCharm

import numpy as np
import tensorflow as tf
from PIL import Image
import pywt
import time
import matplotlib.pyplot as plt


# C is channel # just suit for J=1
def tf_dwt(yl,  wave='haar'):
    w = pywt.Wavelet(wave)
    ll = np.outer(w.dec_lo, w.dec_lo)
    lh = np.outer(w.dec_hi, w.dec_lo)
    hl = np.outer(w.dec_lo, w.dec_hi)
    hh = np.outer(w.dec_hi, w.dec_hi)
    d_temp = np.zeros((np.shape(ll)[0], np.shape(ll)[1], 1, 4))
    d_temp[::-1, ::-1, 0, 0] = ll
    d_temp[::-1, ::-1, 0, 1] = lh
    d_temp[::-1, ::-1, 0, 2] = hl
    d_temp[::-1, ::-1, 0, 3] = hh

    filts = d_temp.astype('float32')

    filts = filts[None, :, :, :, :]

    filter = tf.convert_to_tensor(filts)
    sz = 2 * (len(w.dec_lo) // 2 - 1)

    with tf.variable_scope('DWT'):

        ### Pad odd length images
        # if in_size[0] % 2 == 1 and tf.shape(yl)[1] % 2 == 1:
        #     yl = tf.pad(yl, tf.constant([[0, 0], [sz, sz + 1], [sz, sz + 1], [0, 0]]), mode='reflect')
        # elif in_size[0] % 2 == 1:
        #     yl = tf.pad(yl, tf.constant([[0, 0], [sz, sz + 1], [sz, sz], [0, 0]]), mode='reflect')
        # elif in_size[1] % 2 == 1:
        #     yl = tf.pad(yl, tf.constant([[0, 0], [sz, sz], [sz, sz + 1], [0, 0]]), mode='reflect')
        # else:
        yl = tf.pad(yl, tf.constant([[0, 0], [sz, sz], [sz, sz], [0, 0]]), mode='reflect')

        y = tf.expand_dims(yl, 1)
        inputs = tf.split(y, [1]*int(y.shape.dims[4]), 4)
        inputs = tf.concat([x for x in inputs], 1)

        outputs_3d = tf.nn.conv3d(inputs, filter, padding='VALID', strides=[1, 1, 2, 2, 1])
        outputs = tf.split(outputs_3d, [1] * int(outputs_3d.shape.dims[1]), 1)
        outputs = tf.concat([x for x in outputs], 4)

        outputs = tf.reshape(outputs, (tf.shape(outputs)[0], tf.shape(outputs)[2],
                                       tf.shape(outputs)[3], tf.shape(outputs)[4]))

    return outputs


def tf_idwt(y,  wave='haar'):
    w = pywt.Wavelet(wave)
    ll = np.outer(w.rec_lo, w.rec_lo)
    lh = np.outer(w.rec_hi, w.rec_lo)
    hl = np.outer(w.rec_lo, w.rec_hi)
    hh = np.outer(w.rec_hi, w.rec_hi)
    d_temp = np.zeros((np.shape(ll)[0], np.shape(ll)[1], 1, 4))
    d_temp[:, :, 0, 0] = ll
    d_temp[:, :, 0, 1] = lh
    d_temp[:, :, 0, 2] = hl
    d_temp[:, :, 0, 3] = hh
    filts = d_temp.astype('float32')
    filts = filts[None, :, :, :, :]
    filter = tf.convert_to_tensor(filts)
    s = 2 * (len(w.dec_lo) // 2 - 1)
    out_size = tf.shape(y)[1]

    with tf.variable_scope('IWT'):
        y = tf.expand_dims(y, 1)
        inputs = tf.split(y, [4] * int(int(y.shape.dims[4])/4), 4)
        inputs = tf.concat([x for x in inputs], 1)

        outputs_3d = tf.nn.conv3d_transpose(inputs, filter, output_shape=[tf.shape(y)[0], tf.shape(inputs)[1],
                                                                          2*(out_size-1)+np.shape(ll)[0],
                                                                          2*(out_size-1)+np.shape(ll)[0], 1],
                                            padding='VALID', strides=[1, 1, 2, 2, 1])
        outputs = tf.split(outputs_3d, [1] * int(int(y.shape.dims[4])/4), 1)
        outputs = tf.concat([x for x in outputs], 4)

        outputs = tf.reshape(outputs, (tf.shape(outputs)[0], tf.shape(outputs)[2],
                                       tf.shape(outputs)[3], tf.shape(outputs)[4]))
        outputs = outputs[:, s: 2 * (out_size - 1) + np.shape(ll)[0] - s, s: 2 * (out_size - 1) + np.shape(ll)[0] - s,
                  :]
    return outputs


if __name__ == '__dwt__':
    # load images
    a = Image.open('12074.jpg')
    X_n = np.array(a).astype('float32')
    X_n = X_n / 255
    X_n = X_n[0:256, 0:256, :]
    X_t = np.zeros((1, 256, 256, 3), dtype='float32')
    X_t[0, :, :, :] = X_n[:, :, :]

    X_tf = tf.convert_to_tensor(X_t)

    # convert to tensor
    sess = tf.Session()
    inputs = tf.placeholder(tf.float32, [None, None, None, 3], name='inputs')
    outputs_in = tf.placeholder(tf.float32, [None, None, None, 12], name='outputs')
    outputs = tf_dwt(inputs)
    outputs_mex = tf_idwt(outputs_in)
    sess.run(tf.global_variables_initializer())
    time_start = time.time()
    outputs_dwt = sess.run(outputs, feed_dict={inputs: X_t})
    outputs_mex = sess.run(outputs_mex, feed_dict={outputs_in: outputs_dwt})

    time_end = time.time()
    print('totally cost', time_end - time_start)

    # show the decomposition images
    plt.figure()
    plt.imshow(outputs_dwt[0, :, :, 0], cmap='gray')
    plt.figure()
    plt.imshow(outputs_mex[0, :, :, 0], cmap='gray')

    # # # pywt
    cA, (cH, cV, cD) = pywt.dwt2(X_n[:, :, 0], 'haar')

    # show the pywt
    plt.figure()
    plt.imshow(np.abs(cH-outputs_dwt[0, :, :, 1]), cmap='gray')
    plt.figure()
    plt.imshow(np.abs(X_n[:, :, 1] - outputs_mex[0, :, :, 1]), cmap='gray')

    plt.show()