1. 程式人生 > >二叉樹的遞迴與非遞迴遍歷

二叉樹的遞迴與非遞迴遍歷

  • 遍歷時對樹的一種基本運算,所為遍歷二叉樹就是按一定的規則和順序走遍二叉樹的所有節點,是每一個節點都被訪問一次,有且只被訪問一次。由於二叉樹是非線性結構,因此,樹的遍歷實質上是將二叉樹的各個節點轉化為一個現行序列來表示。
  • 下面的程式碼就是實現樹的遍歷的遞迴與非遞迴遍歷的,還補充了一些常用遞迴求解的常見問題。
#include<iostream>
#include<stack>
#include<queue>
using namespace std;
typedef char elemtype;

//二叉樹節點形式
typedef struct BTreeNode
{
	elemtype data;
	struct BTreeNode *left;
	struct BTreeNode *right;
}BtNode;

//為二叉樹節點申請空間
BTNode *BuyNode(int val)
{
	BtNode *s = (BtNode*)malloc(sizeof(BtNode));
	s->data = val;
	s->left = NULL;
	s->right = NULL;
	return s;
}

//創造一顆二叉樹
//根據陣列來建立一顆二叉樹
BtNode *CreateTree(char *arr, int len, int i)
{
	BtNode *s = NULL;
	if(i  < n)
	{
		s = BuyNode(arr[i]);
		s->left = CreateTree(arr, len, 2 * i);
		s->right = CreateTree(arr, len, 2 * i + 1);
	}
	return s;
}
BtNode *CreateTreeArr(char *arr, int len)
{
	if(arr == NULL || len <= 0)
	{
		return NULL;
	}
	return CreateTree(arr, len, 0);
}

//根據二叉樹的先序和中序建立樹
BtNode *CreatePI(char *ps, char *is, int len)
{
	BtNode *s = NULL;
	if(len > 0)
	{
		s = BuyNode(ps[0]);
		int pos = -1;
		for(int i = 0; i < len; i++)
		{
			if(ps[0] == is[i])
			{
				pos = i;
				break;
			}
		}
		if(pos == -1)
		{
			return NULL;
		}
		s->left = CreatePI(ps + 1, is, pos);
		s->right = CreatePI(ps + pos + 1, is + pos + 1, len - pos - 1);
	}
	return s;
}
BtNode *CreateTreePI(char *ps, char *is, int len)
{
	if(ps == NULL || is == NULL || len <= 0)
	{
		return NULL;
	}
	return CreatePI(ps, is, len);
}

//根據中序和後序來建立一顆二叉樹
BtNode *CreateLI(char *ls, char *is, int len)
{
	BtNode *s = NULL;
	if(len > 0)
	{
		s = BuyNode(ls[len - 1]);
		int pos = -1;
		for(int i = 0; i < len; i++)
		{
			if(is[i] == ls[len - 1])
			{
				pos = i;
				break;
			}
		}
		if(pos == -1)
		{
			return NULL;
		}
		s->left = CreateLI(ls, is, pos);
		s->right = CreateLI(ls + pos, is + pos + 1, len - pos - 1);
	}
	return s;
}
BtNode *CreateTreeLI(char *ls, char *is, int len)
{
	if(ls == NULL || is == NULL || len <= 0)
	{
		return NULL;
	}
	return CreateLI(ls, is, len);
}

//二叉樹的遍歷
//遞迴的先序遍歷
void  PreOrder(BtNode *ptree)
{
	if(ptree == NULL)
	{
		return;
	}
	cout << ptree->data << " ";
	PreOrder(ptree->left);
	PreOrder(ptree->right);
}
//非遞迴的先序遍歷
void NicePreOrder(BtNode *ptree)
{
	if(ptree == NULL)
	{
		return;
	}
	stack<BtNode*> st;
	st.push(ptree);
	while(!st.empty())
	{
		ptree = st.top();
		st.pop();
		cout << ptree->data << " ";
		if(ptree->right != NULL)
		{
			st.push(ptree->right);
		} 
		if(ptree->left != NULL)
		{
			st.push(ptree->left);
		}
	}
	cout << endl;
}

//遞迴的中序遍歷
void  InOrder(BtNode *ptree)
{
	if(ptree == NULL)
	{
	 	 return;
	}
	InOrder(ptree->left);
 	cout << ptree->data << " ";
	InOrder(ptree->right);
}
//非遞迴的中序遍歷
void NiceInOrder(BtNode *ptree)
{
	if(ptree == NULL)
	{
		return;
	}
	stack<BtNode*> st;
	while(!st.empty() || ptree != NULL)
	{
		while(ptree)
		{
			st.push(ptree);
			ptree = ptree->left;
		}
		ptree = st.top();
		st.pop();
		cout << ptree->data << " ";
		ptree = ptree->right;
	}
	cout << endl;
}

//遞迴的後序遍歷
void  PastOrder(BtNode *ptree)
{
	if(ptree == NULL)
 	{
  		return;
	}
 	PastOrder(ptree->left);
 	PastOrder(ptree->right);
 	cout << ptree->data << " ";
}
//非遞迴的後序遍歷
void NicePastOrder(BtNode *ptree)
{
	if(ptree == NULL)
	{
		return;
	}
	stack<BtNode *> st;
	BtNode *flag = NULL;
	while(ptree != NULL || st.empty())
	{
		while(ptree != NULL)
		{
			st.push(ptree):
			ptree = ptree->left;
		}
		ptree = st.top();
		st.pop();
		if(ptree->right == NULL || ptree->right == flag)
		{
			cout << ptree->data << " ";
			flag = ptree;
			ptree = NULL;
		}
		else
		{
			st.push(ptree);
			ptree = ptree->right;
		}
	}
}

//二叉樹的層序遍歷並計算出樹的高度
int NiceLevelOrder(BtNode *ptree)
{
	if(ptree == NULL)
	{
		return;
	}
	queue<BtNode *> que;
	int high = 0;
	que.push(ptree);
	while(!que.empty())
	{
		int len = que.size();
		high++;
		while(len--)
		{
			ptree = que.front();
			que.pop();
			cout << ptree->data << " ";
			if(ptree->left != NULL)
			{
				que.push(ptree->left);
			}
			if(ptree->right != NULL)
			{
				que.push(ptree->right);
			}
		}
	}
	return high;
}

//遞迴法求樹的高度
int GetTreeHigh(BtNode *ptree)
{
	if(ptree == NULL)
	{
		return 0;
	}
	return GetTreeHigh(ptree->left) > GetTreeHigh(ptree->right) ? 
	                                  GetTreeHigh(ptree->left) + 1 : GetTreeHigh(ptree->right) + 1;
}