不宜妄自菲薄,引喻失義。

0、前提

0.1 配置

0.2 有關spark

說明:
spark 不相容 Python3.6
安裝注意版本
可下載:
anaconda4.2

一、例項分析

1.1 資料 student.txt

student.txt

1.2 程式碼

#studentExample 例子 練習
def map_func(x):
    s = x.split()
    return (s[0], [int(s[1]),int(s[2]),int(s[3])]) #返回為(key,vaklue)格式,其中key:x[0],value:x[1]且為有三個元素的列表    
    #return (s[0],[int(s[1],s[2],s[3])])   #注意此用法不合法

def has100(x):
    for y in x:
        if(y == 100):  #把x、y理解為 x軸、y軸 
            return True
        return False

def allis0(x):
    if(type(x)==list and sum(x) == 0): #型別為list且總分為0 者為true;其中type(x)==list :判斷型別是否相同
        return True
    return False

def subMax(x,y):
    m = [x[1][i] if(x[1][i] > y[1][i]) else y[1][i] for i in range(3)]
    return('Maximum subject score', m)

def sumSub(x,y):
    n = [x[1][i]+y[1][i] for i in range(3)]
    #或者 n = ([x[1][0]+y[1][0],x[1][1]+y[1][0],x[1][2]+y[1][2]]) 
    return('Total subject score', n)

def sumPer(x):
    return (x[0],sum(x[1]))


#停止之前的SparkContext,不然重新執行或者建立工作會失敗;另外,只有 sc.stop()也可以,但是首次執行會有誤    
try:
    sc.stop()  
except:
    pass 

from pyspark import SparkContext   #匯入模組
sc=SparkContext(appName='Student')  #命名
lines=sc.textFile("student.txt").map(lambda x:map_func(x)).cache() #匯入資料且保持在記憶體中,其中cache():資料保持在記憶體中
count=lines.count()  #對RDD中的資料個數進行計數;其中,RDD一行為一個數據集


#RDD'轉換'運算 (篩選 關鍵字filter)
whohas100 = lines.filter(lambda x: has100(x[1])).collect() #注意:處理的是value列表,也就是x[1]
whois0 = lines.filter(lambda x: allis0(x[1])).collect()

#‘動作’運算
maxScore = max(sumScore,key=lambda x: x[1]) #總分最高者
minScore = min(sumScore,key=lambda x: x[1]) #總分最低者
avgScore = [x/count for x in sumSubScore[1]]#單科成績平均值

#RDD key-value‘轉換’運算
subM = lines.reduce(lambda x,y: subMax(x,y))
sumSubScore = lines.reduce(lambda x,y: sumSub(x,y))
redByK = lines.reduceByKey(lambda x,y: [x[i]+y[i] for i in range(3)]).collect() #合併key相同的value值x[0]+y[0],x[1]+y[1],x[2]+y[2]

#RDD'轉換'運算
sumPerSore = lines.map(lambda x: sumPer(x)).collect() #每個人的總分 #sumSore = lines.map(lambda x: (x[0],sum(x[1]))).collect()
sorted = lines.sortBy(lambda x: sum(x[1])) #總成績低到高的學生成績排序
sortedWithRank = sorted.zipWithIndex().collect()#按總分排序
first3 = sorted.takeOrdered(3,key=lambda x:-sum(x[1])) #總分前三者


#限定以空格的形式輸出到檔案中
first3RDD = sc.parallelize(first3)\
.map(lambda x:str(x[0])+' '+str(x[1][0])+' '+str(x[1][1])+' '+str(x[1][2]))
.saveAsTextFile("result")
#print(lines.collect())
print("資料集個數(行):",count)
print("單科滿分者:",whohas100)
print("單科零分者:",whois0)
print("單科最高分者:",subM)
print("單科總分:",sumSubScore)
print("合併名字相同的分數:",redByK)
print("總分/(人)",sumPerSore)
print("最高總分者:",maxScore)
print("最低總分者:",minScore)
print("每科平均成績:",avgScore)
print("總分倒序:",sortedWithRank)
print("總分前三者:",first3)
print(first3RDD)
sc.stop() 

1.3 結果展示

資料集個數(行): 7
單科滿分者: [('li', [100, 54, 0]), ('li', [100, 54, 0])]
單科零分者: [('yanf', [0, 0, 0])]
單科最高分者: ('Maximum subject score', [100, 90, 100])
單科總分: ('Total subject score', [485, 438, 280])
合併名字相同的分數: [('li', [200, 108, 0]), ('zhang', [180, 180, 200]), ('yang', [85, 90, 30]), ('wang', [20, 60, 50]), ('yanf', [0, 0, 0])]
總分/(人) [('yang', 205), ('wang', 130), ('zhang', 280), ('zhang', 280), ('li', 154), ('li', 154), ('yanf', 0)]
最高總分者: ('zhang', 280)
最低總分者: ('yanf', 0)
每科平均成績: [69.28571428571429, 62.57142857142857, 40.0]
總分倒序: [(('yanf', [0, 0, 0]), 0), (('wang', [20, 60, 50]), 1), (('li', [100, 54, 0]), 2), (('li', [100, 54, 0]), 3), (('yang', [85, 90, 30]), 4), (('zhang', [90, 90, 100]), 5), (('zhang', [90, 90, 100]), 6)]
總分前三者: [('zhang', [90, 90, 100]), ('zhang', [90, 90, 100]), ('yang', [85, 90, 30])]
None

二、程式碼解析

2.1函式解析

2.1.1 collect()

RDD的特性
RDD特性
在進行基本RDD“轉換”運算時不會立即執行,結果不會顯示在顯示屏中,collect()是一個“動作”運算,會立刻執行,顯示結果。

2.1.2 reduce()

說明

reduce()函式會對引數序列中的元素進行累積。

語法

reduce(function, iterable[, initializer])

引數
  • function – 函式,有兩個引數
  • iterable – 可迭代物件
  • initializer – 可選,初始引數
例項

說明:Python3的內建函式移除了reduce函式,reduce函式放在functools模組

In [24]:

#r = reduce(lambda x, y: x+y, [4,4,5,5])  # 使用 lambda 匿名函式
from functools import reduce 
def add(x, y) :            # 兩數相加
    return x + y
reduce(add, [1,2,3,4,5])
Out[24]:
15
In [25]:

reduce(lambda x, y: x+y, [1,2,3,4,5])  # 使用 lambda 匿名函式
Out[25]:
15

2.1.3 type()

語法

class type(name, bases, dict)

引數
  • name – 類的名稱。
  • bases – 基類的元組。
  • dict – 字典,類內定義的名稱空間變數。
返回值

一個引數返回物件型別, 三個引數,返回新的型別物件。

例項
#一個引數例項

In [1]:

type(1)
Out[1]:
int
In [2]:

type([2])
Out[2]:
list
In [3]:

type({3:'three'})
Out[3]:
dict
In [5]:

x = 5
type(x) == list #判斷x的型別是否為list
Out[5]:
False
#三個引數例項

class y(object):
    z = 5
​
x = type('y',(object,),dict(z=5))
​
print(x)

<class '__main__.y'>  #產生一個新的型別

三、問題分析

An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 2.0 failed 1 times, most recent failure: Lost task 1.0 in stage 2.0 (TID 5, localhost, executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent call last):

解析

1、檢查拼寫是否有誤
2、檢查縮排是否合規
3、檢查()是否一一配對

四、例項 小練

4.1 資料 user_small

1441900799.728000   1441900802.452000   8618245698655   0134730038729312    2   1   1   IPHONE_5    17999   20693   10.67.23.157    111.13.34.100   6   58986   80  GET mmsns.qpic.cn   /mmsns/PdibpV1sFDHdaOTqNXb8VGSNicyYpOVa9R7icxSr4BkwbsSyzJbBTmE5Zz5aZichejbkKuia7twzraqk/150?tp=webp&length=1136&width=640   weixin.qq.com/?version=369229843&uin=2925174340&nettype=0&scene=moment  WeChat/6.2.0.19 CFNetwork/711.3.18 Darwin/14.0.0    200 59  image/webp  7504    706 8212    7   1827
1441900750.023000   1441900754.063000   8613836044032   0136210021269713    2   1   1   IPHONE_5    17752   25632   10.67.21.71 117.144.242.26  6   52941   80  POST    short.weixin.qq.com http://short.weixin.qq.com/cgi-bin/micromsg-bin/tenpay  -   MicroMessenger Client   -   -   -   -   715 0   7   1827
1441900755.480472   1441900756.762000   8618246899077   0131830068670612    2   1   1   IPHONE_4S   17875   61433   10.67.43.51 120.192.84.86   6   58684   31271   GET i.gtimg.cn  http://i.gtimg.cn/qqshow/admindata/comdata/vip_emoji_aio_ios_new_config/xydata.json -   QQ/5.7.0.469 CFNetwork/672.0.8 Darwin/14.0.0    304 83  x-json  -   0   0   18  1041
1441900754.860000   1441900755.480472   8618246899077   0131830068670612    2   1   1   IPHONE_4S   17875   61433   10.67.43.51 120.192.84.86   6   58684   31271   GET i.gtimg.cn  http://i.gtimg.cn/club/item/avatar/zip/0/i0/all.zip -   QQ/5.7.0.469 CFNetwork/672.0.8 Darwin/14.0.0    404 210 text/html   85  487 411 18  1041
1441900753.786000   1441900755.726000   8618246195634   9900026543899411    2   1   1   IPHONE_4S   17783   19302   10.67.29.55 111.40.194.207  6   49412   80  GET sb.symcd.com    /MFYwVKADAgEAME0wSzBJMAkGBSsOAwIaBQAEFDmvGLQcAh85EJZW%2FcbTWO90hYuZBBROQ8gddu83U3pP8lhvlPM44tW93wIQd9jUM82by0%2FVy957MNapGQ%3D%3D   -   securityd (unknown version) CFNetwork/672.0.2 Darwin/14.0.0 -   -   -   -   522 0   18  1041
1441900761.308739   1441900761.408000   8615045213668   0127590050857822    2   1   1   IPHONE_4    17772   50621   10.67.63.219    183.232.95.61   6   49337   80  POST    szminorshort.weixin.qq.com  http://szminorshort.weixin.qq.com/cgi-bin/micromsg-bin/rtkvreport   -   MicroMessenger Client   -   -   -   -   500 16  7   1827
1441900696.427624   1441900761.308739   8615045213668   0127590050857822    2   1   1   IPHONE_4    17772   50621   10.67.63.219    183.232.95.61   6   49337   80  POST    szminorshort.weixin.qq.com  http://szminorshort.weixin.qq.com/cgi-bin/micromsg-bin/rtkvreport   -   MicroMessenger Client   -   -   -   -   500 16  7   1827
1441900693.219000   1441900696.427624   8615045213668   0127590050857822    2   1   1   IPHONE_4    17772   50621   10.67.63.219    183.232.95.61   6   49337   80  POST    szminorshort.weixin.qq.com  http://szminorshort.weixin.qq.com/cgi-bin/micromsg-bin/rtkvreport   -   MicroMessenger Client   -   -   -   -   502 16  7   1827
1441900750.845345   1441900753.537000   8618246195634   9900026543899411    2   1   1   IPHONE_4S   17783   19302   10.67.29.55 117.135.169.124 6   49411   80  GET b227.photo.store.qq.com /psb?/V12jlwSP30SPej/VE1V5LlXFMzHeg5gTzpyuCueaEVEGV*0X6BbSyJZRhs!/b/dCWGUIc.HQAA&ek=1&kp=1&pt=0&bo=yAD6AAAAAAABBxI!&t=5 v1_iph_sq_5.6.0_1_app_a-4-2 QQ/5.6.0.438 CFNetwork/672.0.2 Darwin/14.0.0    -   -   -   -   792 0   18  1041
1441900748.094000   1441900750.845345   8618246195634   9900026543899411    2   1   1   IPHONE_4S   17783   19302   10.67.29.55 117.135.169.124 6   49411   80  GET b227.photo.store.qq.com /psb?/V12jlwSP30SPej/VE1V5LlXFMzHeg5gTzpyuCueaEVEGV*0X6BbSyJZRhs!/b/dCWGUIc.HQAA&ek=1&kp=1&pt=0&bo=yAD6AAAAAAABBxI!&t=5 v1_iph_sq_5.6.0_1_app_a-4-2 QQ/5.6.0.438 CFNetwork/672.0.2 Darwin/14.0.0    -   -   -   -   792 0   18  1041

4.2 使用者上網記錄統計(一行為一條記錄).(使用者:第3列)

#test 1_1 使用者上網記錄統計
sc.stop()
from pyspark import SparkContext
sc = SparkContext(appName='test1')
rdd = sc.textFile('user_small')\
    .map(lambda x:x.split('\t'))\
    .map(lambda x:(x[3],1))\
    .reduceByKey(lambda x,y:x+y)\
    .map(lambda x:str(x[0])+' '+str(x[0][1])).collect()
    #.saveAsTextFile('text1_1')  #限定為空格鍵輸出到檔案
print(rdd)
['0127590050857822 1', '9900026543899411 9', '0131830068670612 1', '0136210021269713 1', '0134730038729312 1']

4.2使用者流量統計。分別統計上行流量及下行流量並將結果各列以空格鍵隔開輸出到檔案。(使用者:第3列;上行流量:第25列;下行流量:第26列)

#test 1_2 統計使用者上網  分別為上、下行流量

def map_func(x):
    s = x.split('\t')
    return (s[2],[int(s[24]),int(s[25])])#返回為(key,vaklue)格式,其中key:x[0],value:x[1]且為有三個元素的列表    
    #return (s[0],[int(s[1],s[2],s[3])])   #注意此用法不合法

try:
    sc.stop()  #停止之前的SparkContext,不然重新執行或者建立工作會失敗
except:
    pass 

from pyspark import SparkContext
sc=SparkContext(appName='test')
lines=sc.textFile("user_small").map(lambda x:map_func(x)).cache() 
redByK = lines.reduceByKey(lambda x,y: (x[0]+y[0],x[1]+y[1]))
sum_flow = redByK.map(lambda x:str(x[0])+' '+str(x[1][0])+' '+str(x[1][1]))\
    .saveAsTextFile('text1_2')  
sc.stop()

4.3 統計使用者總流量

#test 1_2 統計使用者上網  總流量
try:
    sc.stop()  #停止之前的SparkContext,不然重新執行或者建立工作會失敗
except:
    pass 

from pyspark import SparkContext
sc = SparkContext(appName='test1')
rdd = sc.textFile('user_small')\
    .map(lambda x:x.split('\t'))\
    .map(lambda x:(x[2],int(x[24])+int(x[25])))\
    .reduceByKey(lambda x,y:x+y)\
    .map(lambda x:str(x[0])+' '+str(x[1])).collect()
print(rdd)
sc.stop()
['8618246899077 898', '8615045213668 1550', '8618245698655 8918', '8613836044032 715', '8618246195634 2106']

4.4、微信APP流量統計。(微信APP特徵MicroMessenger,位於第20列,統計對應的下行流量值——第26列的數值。)

#test 1_3
sc.stop()
from pyspark import SparkContext
sc = SparkContext(appName='test1')
rdd = sc.textFile('user_small')\
    .map(lambda x:x.split('\t'))\
    .map(lambda x:(x[19],int(x[25])))\
    .filter(lambda x: 'WeChat' or 'MicroMessenger' in x[1])#篩選\
    .reduceByKey(lambda x,y:x+y)\
    .map(lambda x:str(x[0])+' '+str(x[1])).collect()

print(rdd)
['securityd (unknown version) CFNetwork/672.0.2 Darwin/14.0.0 0', 'QQ/5.6.0.438 CFNetwork/672.0.2 Darwin/14.0.0 0', 'QQ/5.7.0.469 CFNetwork/672.0.8 Darwin/14.0.0 411', 'MicroMessenger Client 48', 'WeChat/6.2.0.19 CFNetwork/711.3.18 Darwin/14.0.0 8212']
.