1. 程式人生 > >CNN(卷積神經網路)、RNN(迴圈神經網路)、DNN(深度神經網路)的內部網路結構的區別

CNN(卷積神經網路)、RNN(迴圈神經網路)、DNN(深度神經網路)的內部網路結構的區別

神經網路技術起源於上世紀五、六十年代,當時叫感知機(perceptron),擁有輸入層、輸出層和一個隱含層。輸入的特徵向量通過隱含層變換達到輸出層,在輸出層得到分類結果。早期感知機的推動者是Rosenblatt。(扯一個不相關的:由於計算技術的落後,當時感知器傳輸函式是用線拉動變阻器改變電阻的方法機械實現的,腦補一下科學家們扯著密密麻麻的導線的樣子…)

但是,Rosenblatt的單層感知機有一個嚴重得不能再嚴重的問題,即它對稍複雜一些的函式都無能為力(比如最為典型的“異或”操作)。連異或都不能擬合,你還能指望這貨有什麼實際用途麼o(╯□╰)o

隨著數學的發展,這個缺點直到上世紀八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)發明的多層感知機

(multilayer perceptron)克服。多層感知機,顧名思義,就是有多個隱含層的感知機(廢話……)。好好,我們看一下多層感知機的結構:

圖1 上下層神經元全部相連的神經網路——多層感知機

多層感知機可以擺脫早期離散傳輸函式的束縛,使用sigmoid或tanh等連續函式模擬神經元對激勵的響應,在訓練演算法上則使用Werbos發明的反向傳播BP演算法。對,這貨就是我們現在所說的神經網路NN——神經網路聽起來不知道比感知機高階到哪裡去了!這再次告訴我們起一個好聽的名字對於研(zhuang)究(bi)很重要!

多層感知機解決了之前無法模擬異或邏輯的缺陷,同時更多的層數也讓網路更能夠刻畫現實世界中的複雜情形。相信年輕如Hinton當時一定是春風得意。

多層感知機給我們帶來的啟示是,神經網路的層數直接決定了它對現實的刻畫能力——利用每層更少的神經元擬合更加複雜的函式1

(Bengio如是說:functions that can be compactly represented by a depth k architecture might require an exponential number of computational elements to be represented by a depth k − 1 architecture.)

即便大牛們早就預料到神經網路需要變得更深,但是有一個夢魘總是縈繞左右。隨著神經網路層數的加深,優化函式越來越容易陷入區域性最優解

,並且這個“陷阱”越來越偏離真正的全域性最優。利用有限資料訓練的深層網路,效能還不如較淺層網路。同時,另一個不可忽略的問題是隨著網路層數增加,“梯度消失”現象更加嚴重。具體來說,我們常常使用sigmoid作為神經元的輸入輸出函式。對於幅度為1的訊號,在BP反向傳播梯度時,每傳遞一層,梯度衰減為原來的0.25。層數一多,梯度指數衰減後低層基本上接受不到有效的訓練訊號。

2006年,Hinton利用預訓練方法緩解了區域性最優解問題,將隱含層推動到了7層2,神經網路真正意義上有了“深度”,由此揭開了深度學習的熱潮。這裡的“深度”並沒有固定的定義——在語音識別中4層網路就能夠被認為是“較深的”,而在影象識別中20層以上的網路屢見不鮮。為了克服梯度消失,ReLU、maxout等傳輸函式代替了sigmoid,形成了如今DNN的基本形式。單從結構上來說,全連線的DNN和圖1的多層感知機是沒有任何區別的。

值得一提的是,今年出現的高速公路網路(highway network)和深度殘差學習(deep residual learning)進一步避免了梯度消失,網路層數達到了前所未有的一百多層(深度殘差學習:152層)[3,4]!具體結構題主可自行搜尋瞭解。如果你之前在懷疑是不是有很多方法打上了“深度學習”的噱頭,這個結果真是深得讓人心服口服。

圖2縮減版的深度殘差學習網路,僅有34層,終極版有152層,自行感受一下

如圖1所示,我們看到全連線DNN的結構裡下層神經元和所有上層神經元都能夠形成連線,帶來的潛在問題是引數數量的膨脹。假設輸入的是一幅畫素為1K*1K的影象,隱含層有1M個節點,光這一層就有10^12個權重需要訓練,這不僅容易過擬合,而且極容易陷入區域性最優。另外,影象中有固有的區域性模式(比如輪廓、邊界,人的眼睛、鼻子、嘴等)可以利用,顯然應該將影象處理中的概念和神經網路技術相結合。此時我們可以祭出題主所說的卷積神經網路CNN。對於CNN來說,並不是所有上下層神經元都能直接相連,而是通過“卷積核”作為中介。同一個卷積核在所有影象內是共享的,影象通過卷積操作後仍然保留原先的位置關係。兩層之間的卷積傳輸的示意圖如下:

圖3卷積神經網路隱含層(摘自Theano教程)

通過一個例子簡單說明卷積神經網路的結構。假設圖3中m-1=1是輸入層,我們需要識別一幅彩色影象,這幅影象具有四個通道ARGB(透明度和紅綠藍,對應了四幅相同大小的影象),假設卷積核大小為100*100,共使用100個卷積核w1到w100(從直覺來看,每個卷積核應該學習到不同的結構特徵)。用w1在ARGB影象上進行卷積操作,可以得到隱含層的第一幅影象;這幅隱含層影象左上角第一個畫素是四幅輸入影象左上角100*100區域內畫素的加權求和,以此類推。同理,算上其他卷積核,隱含層對應100幅“影象”。每幅影象對是對原始影象中不同特徵的響應。按照這樣的結構繼續傳遞下去。CNN中還有max-pooling等操作進一步提高魯棒性。

圖4一個典型的卷積神經網路結構,注意到最後一層實際上是一個全連線層(摘自Theano教程)

在這個例子裡,我們注意到輸入層到隱含層的引數瞬間降低到了100*100*100=10^6個!這使得我們能夠用已有的訓練資料得到良好的模型。題主所說的適用於影象識別,正是由於CNN模型限制引數了個數並挖掘了局部結構的這個特點。順著同樣的思路,利用語音語譜結構中的區域性資訊,CNN照樣能應用在語音識別中。

全連線的DNN還存在著另一個問題——無法對時間序列上的變化進行建模。然而,樣本出現的時間順序對於自然語言處理、語音識別、手寫體識別等應用非常重要。對了適應這種需求,就出現了題主所說的另一種神經網路結構——迴圈神經網路RNN。

在普通的全連線網路或CNN中,每層神經元的訊號只能向上一層傳播,樣本的處理在各個時刻獨立,因此又被成為前向神經網路(Feed-forward Neural Networks)。而在RNN中,神經元的輸出可以在下一個時間戳直接作用到自身,即第i層神經元在m時刻的輸入,除了(i-1)層神經元在該時刻的輸出外,還包括其自身在(m-1)時刻的輸出!表示成圖就是這樣的:

圖5 RNN網路結構

我們可以看到在隱含層節點之間增加了互連。為了分析方便,我們常將RNN在時間上進行展開,得到如圖6所示的結構:

圖6 RNN在時間上進行展開

Cool,(t+1)時刻網路的最終結果O(t+1)是該時刻輸入和所有歷史共同作用的結果!這就達到了對時間序列建模的目的。

不知題主是否發現,RNN可以看成一個在時間上傳遞的神經網路,它的深度是時間的長度!正如我們上面所說,“梯度消失”現象又要出現了,只不過這次發生在時間軸上。對於t時刻來說,它產生的梯度在時間軸上向歷史傳播幾層之後就消失了,根本就無法影響太遙遠的過去。因此,之前說“所有歷史”共同作用只是理想的情況,在實際中,這種影響也就只能維持若干個時間戳。

為了解決時間上的梯度消失,機器學習領域發展出了長短時記憶單元LSTM,通過門的開關實現時間上記憶功能,並防止梯度消失,一個LSTM單元長這個樣子:

圖7 LSTM的模樣

除了題主疑惑的三種網路,和我之前提到的深度殘差學習、LSTM外,深度學習還有許多其他的結構。舉個例子,RNN既然能繼承歷史資訊,是不是也能吸收點未來的資訊呢?因為在序列訊號分析中,如果我能預知未來,對識別一定也是有所幫助的。因此就有了雙向RNN、雙向LSTM,同時利用歷史和未來的資訊

圖8雙向RNN

事實上,不論是那種網路,他們在實際應用中常常都混合著使用,比如CNN和RNN在上層輸出之前往往會接上全連線層,很難說某個網路到底屬於哪個類別。不難想象隨著深度學習熱度的延續,更靈活的組合方式、更多的網路結構將被髮展出來。儘管看起來千變萬化,但研究者們的出發點肯定都是為了解決特定的問題。題主如果想進行這方面的研究,不妨仔細分析一下這些結構各自的特點以及它們達成目標的手段。入門的話可以參考:

歡迎大家繼續推薦補充。

當然啦,如果題主只是想湊個熱鬧時髦一把,或者大概瞭解一下方便以後把妹使,這樣看看也就罷了吧。

參考文獻:

[1] Bengio Y. Learning Deep Architectures for AI[J]. Foundations & Trends® in Machine Learning, 2009, 2(1):1-127.

[2] Hinton G E, Salakhutdinov R R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006, 313(5786):504-507.

[3] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2015.

[4] Srivastava R K, Greff K, Schmidhuber J. Highway networks. arXiv:1505.00387, 2015.

相關推薦

CNN(神經網路)RNN(迴圈神經網路)DNN(深度神經網路)的內部網路結構區別

神經網路技術起源於上世紀五、六十年代,當時叫感知機(perceptron),擁有輸入層、輸出層和一個隱含層。輸入的特徵向量通過隱含層變換達到輸出層,在輸出層得到分類結果。早期感知機的推動者是Rosenblatt。(扯一個不相關的:由於計算技術的落後,當時感知

神經網路6_CNN(神經網路)RNN(迴圈神經網路)DNN(深度神經網路)概念區分理解

 sklearn實戰-乳腺癌細胞資料探勘(部落格主親自錄製視訊教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm

深度學習】5:CNN神經網路原理識別MNIST資料集

前言:先坦白的說,深度神經網路的學習在一開始對我造成的困擾還是很大的,我也是通過不斷地看相關的視訊資料、文獻講解嘗試去理解記憶。畢竟這些內容大多都是不可查的,我們看到的都只是輸入輸出的東西,裡面的內部運作以及工作原理,都需要沉心靜思。 這篇CNN卷積神經網路的

CNN 神經網路--kernel偏置值導數

卷積層 偏置值導數 ∂E∂blj=∂E∂zlj∗∂zlj∂blj(1) one thing keep in mind: blj是一個標量,又因為 zlj=∑i∈MjXl−1i∗klij+blj(2) 而zlj每一個元素都是與標量blj相關. 因此

Keras學習(四)——CNN神經網路

本文主要介紹使用keras實現CNN對手寫資料集進行分類。 示例程式碼: import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models impo

CNN神經網路簡單實現模型

這是基於Mnist手寫識別的資料訓練的一個簡單的CNN卷積神經網路,可以直接在網上下載訓練資料集,但是經常會出現連線不到伺服器的提示,所以我下到本地進行資料的載入,下面程式碼的資料載入有問題,所以自己找了一些程式碼整出來了這個資料載入的辦法,連結為:https://blog.csdn.net/lxi

深度學習】Tensorflow——CNN 神經網路 2

轉自https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/5-05-CNN3/ 目錄 圖片處理  建立卷積層  建立全連線層  選優化方法  完整程式碼

深度學習】Tensorflow——CNN 神經網路 1

轉自https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/5-04-CNN2/ 這一次我們會說道 CNN 程式碼中怎麼定義 Convolutional 的層和怎樣進行 pooling. 基於上一次卷積神經網路的介

TensorFlow之CNN神經網路的實現

下載MNIST資料集(28*28,輸入維度為784) import tensorflow as tf #下載MNIST資料集(28*28,輸入維度為784) from tensorflow.examples.tutorials.mnist import input_data mnist =

DeepLearning tutorial(4)CNN神經網路原理簡介+程式碼詳解

分享一下我老師大神的人工智慧教程!零基礎,通俗易懂!http://blog.csdn.net/jiangjunshow 也歡迎大家轉載本篇文章。分享知識,造福人民,實現我們中華民族偉大復興!        

Python CNN神經網路程式碼實現

1 # -*- coding: utf-8 -*- 2 """ 3 Created on Wed Nov 21 17:32:28 2018 4 5 @author: zhen 6 """ 7 8 import tensorflow as tf 9 from tensorflow.e

TensorFlow實現CNN神經網路對手寫數字集mnist的模型訓練

mnist手寫數字集相當於是TensorFlow應用中的Helloworld。 在學習了TensorFlow的卷積神經網路應用之後,今天就分步解析一下其應用過程  一、mnist手寫數字資料集         MN

CNN神經網路入門整合

這是一篇關於CNN入門知識的部落格,基本手法是抄、刪、改、查,就算是自己的一個筆記吧,以後忘了多看看。   1.邊界檢測示例 假如你有一張如下的影象,你想讓計算機搞清楚影象上有什麼物體,你可以做的事情是檢測影象的垂直邊緣和水平邊緣。   卷積計算可以得

CNN-神經網路

開局一張圖 資料輸入層 去均值:把輸入資料各個維度都中心化到0             注意只是在訓練資料上,測試集上減去的是訓練集上的均值,不要再求測試集的均值。 歸一化:幅度歸一到同一範圍。             在實際操作中不用,因為RGB天生就是0-2

吳恩達deeplearning之CNN神經網路入門

1.邊界檢測示例 假如你有一張如下的影象,你想讓計算機搞清楚影象上有什麼物體,你可以做的事情是檢測影象的垂直邊緣和水平邊緣。  如下是一個6*6的灰度影象,構造一個3*3的矩陣,在卷積神經網路中通常稱之為filter,對這個6*6的影象進行卷積運算,以左上角的-5計算為例  3*1+

詳細解釋CNN神經網路各層的引數和連線個數的計算

積神經網路是一個多層的神經網路,每層由多個二維平面組成,而每個平面由多個獨立神經元組成。        圖:卷積神經網路的概念示範:輸入影象通過和三個可訓練的濾波器和可加偏置進行卷積,濾波過程如圖一,卷積後在C1層產生三個特徵對映圖,然後特徵對映圖中每組的四個畫素再進行

CNN神經網路原理的直觀理解

哈哈?偶然在知乎上翻到了我旭神對CNN原理的通俗易懂的解釋,看完以後簡直醍醐灌頂呢。 下面上頭像!! 哼,趕緊記錄一下加強一下理解! 轉自知乎我旭神 如果學過數字影象處理,對於卷積核的作用應該不陌生,比如你做一個最簡單的方向濾波器,那就是一個二維卷積核,這個

CNN神經網路

1、MLP和CNN的區別 MLP喪失了二維影象資訊,必須轉成向量 2、將全連線層轉換為區域性連線層 stride和填充:stride步長,對於超出範圍的區域,可以刪除或者填充預設值,根據需要選擇(pandding分別對應valid和same) 3、卷積層的

python神經網路案例——CNN神經網路實現mnist手寫體識別

全棧工程師開發手冊 (作者:欒鵬) 載入樣本資料集 首先我們要有手寫體的資料集檔案 我們實現一個MNIST.py檔案,專門用來讀取手寫體檔案中的資料。 # -*- coding: UTF-8 -*- # 獲取手寫資料。

CNN神經網路基礎

轉自:http://www.sohu.com/a/138403426_470008 卷積神經網路基礎 神經網路 先借用 CNTK 的一個例子,來看看如何使用神經網路來進行分類。如果想根據一個人的年齡和年收入,對他的政治傾向進行分類(保守派,居中和自由派),怎麼做呢?