1. 程式人生 > >socket-tcp 、udp、rawIP

socket-tcp 、udp、rawIP

另外,要補充的是socket三種類型:Datagram socket(使用 UDP協議), stream socket(使用 TCP協議), Raw socket或Raw IP socket(路由器或其他網路裝置使用)

原文如下:

要寫網路程式就必須用Socket,這是程式設計師都知道的。而且,面試的時候,我們也會問對方會不會Socket程式設計?一般來說,很多人都會說,Socket程式設計基本就是listen,accept以及send,write等幾個基本的操作。是的,就跟常見的檔案操作一樣,只要寫過就一定知道。

對於網路程式設計,我們也言必稱TCP/IP,似乎其它網路協議已經不存在了。對於TCP/IP,我們還知道TCP和UDP,前者可以保證資料的正確和可靠性,後者則允許資料丟失。最後,我們還知道,在建立連線前,必須知道對方的IP地址和埠號。除此,普通的程式設計師就不會知道太多了,很多時候這些知識已經夠用了。最多,寫服務程式的時候,會使用多執行緒來處理併發訪問。

我們還知道如下幾個事實:
1。一個指定的埠號不能被多個程式共用。比如,如果IIS佔用了80埠,那麼Apache就不能也用80埠了。
2。很多防火牆只允許特定目標埠的資料包通過。
3。服務程式在listen某個埠並accept某個連線請求後,會生成一個新的socket來對該請求進行處理。

於是,一個困惑了我很久的問題就產生了。如果一個socket建立後並與80埠繫結後,是否就意味著該socket佔用了80埠呢?如果是這樣的,那麼當其accept一個請求後,生成的新的socket到底使用的是什麼埠呢(我一直以為

系統會預設給其分配一個空閒的埠號)?如果是一個空閒的埠,那一定不是80埠了,於是以後的TCP資料包的目標埠就不是80了--防火牆一定會組織其通過的!實際上,我們可以看到,防火牆並沒有阻止這樣的連線,而且這是最常見的連線請求和處理方式。我的不解就是,為什麼防火牆沒有阻止這樣的連線?它是如何判定那條連線是因為connet80埠而生成的?是不是TCP資料包裡有什麼特別的標誌?或者防火牆記住了什麼東西?

後來,我又仔細研讀了TCP/IP的協議棧的原理,對很多概念有了更深刻的認識。比如,在TCP和UDP同屬於傳輸層,共同架設在IP層(網路層)之上。而IP層主要負責的是在節點之間(End to End)的資料包傳送,這裡的節點是一臺網路裝置,比如計算機。因為IP層只負責把資料送到節點,而不能區分上面的不同應用,所以TCP和UDP協議在其基礎上加入了埠的資訊,埠於是標識的是一個節點上的一個應用。除了增加埠資訊,UPD協議基本就沒有對IP層的資料進行任何的處理了。而TCP協議還加入了更加複雜的傳輸控制,比如滑動的資料傳送視窗(Slice Window),以及接收確認和重發機制,以達到資料的可靠傳送。不管應用層看到的是怎樣一個穩定的TCP資料流,下面傳送的都是一個個的IP資料包,需要由TCP協議來進行資料重組。

所以,我有理由懷疑,防火牆並沒有足夠的資訊判斷TCP資料包的更多資訊,除了IP地址和埠號。而且,我們也看到,所謂的埠,是為了區分不同的應用的,以在不同的IP包來到的時候能夠正確轉發。

TCP/IP只是一個協議棧,就像作業系統的執行機制一樣,必須要具體實現,同時還要提供對外的操作介面。就像作業系統會提供標準的程式設計介面,比如Win32程式設計介面一樣,TCP/IP也必須對外提供程式設計介面,這就是Socket程式設計介面--原來是這麼回事啊!

在Socket程式設計接口裡,設計者提出了一個很重要的概念,那就是socket。這個socket跟檔案控制代碼很相似,實際上在BSD系統裡就是跟檔案控制代碼一樣存放在一樣的程序控制代碼表裡。這個socket其實是一個序號,表示其在控制代碼表中的位置。這一點,我們已經見過很多了,比如檔案控制代碼,視窗控制代碼等等。這些控制代碼,其實是代表了系統中的某些特定的物件,用於在各種函式中作為引數傳入,以對特定的物件進行操作--這其實是C語言的問題,在C++語言裡,這個控制代碼其實就是this指標,實際就是物件指標啦。

現在我們知道,socket跟TCP/IP並沒有必然的聯絡。Socket程式設計介面在設計的時候,就希望也能適應其他的網路協議。所以,socket的出現只是可以更方便的使用TCP/IP協議棧而已,其對TCP/IP進行了抽象,形成了幾個最基本的函式介面。比如create,listen,accept,connect,read和write等等。

現在我們明白,如果一個程式建立了一個socket,並讓其監聽80埠,其實是向TCP/IP協議棧聲明瞭其對80埠的佔有。以後,所有目標是80埠的TCP資料包都會轉發給該程式(這裡的程式,因為使用的是Socket程式設計介面,所以首先由Socket層來處理)。所謂accept函式,其實抽象的是TCP的連線建立過程。accept函式返回的新socket其實指代的是本次建立的連線,而一個連線是包括兩部分資訊的,一個是源IP和源埠,另一個是宿IP和宿埠。所以,accept可以產生多個不同的socket,而這些socket裡包含的宿IP和宿埠是不變的,變化的只是源IP和源埠。這樣的話,這些socket宿埠就可以都是80,而Socket層還是能根據源/宿對來準確地分辨出IP包和socket的歸屬關係,從而完成對TCP/IP協議的操作封裝!而同時,放火牆的對IP包的處理規則也是清晰明瞭,不存在前面設想的種種複雜的情形。

明白socket只是對TCP/IP協議棧操作的抽象,而不是簡單的對映關係,這很重要!



1、TCP連線
手機能夠使用聯網功能是因為手機底層實現了TCP/IP協議,可以使手機終端通過無線網路建立TCP連線。TCP協議可以對上層網路提供介面,使上層網路資料的傳輸建立在“無差別”的網路之上。

建立起一個TCP連線需要經過“三次握手”:

第一次握手:客戶端傳送syn包(syn=j)到伺服器,並進入SYN_SEND狀態,等待伺服器確認;

第二次握手:伺服器收到syn包,必須確認客戶的SYN(ack=j+1),同時自己也傳送一個SYN包(syn=k),即SYN+ACK包,此時伺服器進入SYN_RECV狀態;

第三次握手:客戶端收到伺服器的SYN+ACK包,向伺服器傳送確認包ACK(ack=k+1),此包傳送完畢,客戶端和伺服器進入ESTABLISHED狀態,完成三次握手。

握手過程中傳送的包裡不包含資料,三次握手完畢後,客戶端與伺服器才正式開始傳送資料。理想狀態下,TCP連線一旦建立,在通訊雙方中的任何一方主動關閉連線之前,TCP 連線都將被一直保持下去。斷開連線時伺服器和客戶端均可以主動發起斷開TCP連線的請求,斷開過程需要經過“四次握手”(過程就不細寫了,就是伺服器和客戶端互動,最終確定斷開)


2、HTTP連線

HTTP協議即超文字傳送協議(Hypertext Transfer Protocol ),是Web聯網的基礎,也是手機聯網常用的協議之一,HTTP協議是建立在TCP協議之上的一種應用。

HTTP連線最顯著的特點是客戶端傳送的每次請求都需要伺服器回送響應,在請求結束後,會主動釋放連線。從建立連線到關閉連線的過程稱為“一次連線”。

1)在HTTP 1.0中,客戶端的每次請求都要求建立一次單獨的連線,在處理完本次請求後,就自動釋放連線。
2)在HTTP 1.1中則可以在一次連線中處理多個請求,並且多個請求可以重疊進行,不需要等待一個請求結束後再發送下一個請求。
由於HTTP在每次請求結束後都會主動釋放連線,因此HTTP連線是一種“短連線”,要保持客戶端程式的線上狀態,需要不斷地向伺服器發起連線請求。通常的做法是即時不需要獲得任何資料,客戶端也保持每隔一段固定的時間向伺服器傳送一次“保持連線”的請求,伺服器在收到該請求後對客戶端進行回覆,表明知道客戶端“線上”。若伺服器長時間無法收到客戶端的請求,則認為客戶端“下線”,若客戶端長時間無法收到伺服器的回覆,則認為網路已經斷開。


3、SOCKET原理

3.1套接字(socket)概念
套接字(socket)是通訊的基石,是支援TCP/IP協議的網路通訊的基本操作單元。它是網路通訊過程中端點的抽象表示,包含進行網路通訊必須的五種資訊:連線使用的協議,本地主機的IP地址,本地程序的協議埠,遠地主機的IP地址,遠地程序的協議埠。

應用層通過傳輸層進行資料通訊時,TCP會遇到同時為多個應用程式程序提供併發服務的問題。多個TCP連線或多個應用程式程序可能需要通過同一個 TCP協議埠傳輸資料。為了區別不同的應用程式程序和連線,許多計算機作業系統為應用程式與TCP/IP協議互動提供了套接字(Socket)介面。應用層可以和傳輸層通過Socket介面,區分來自不同應用程式程序或網路連線的通訊,實現資料傳輸的併發服務。