說明:本文分為三部分內容,第一部分為一道百度面試題Top K演算法的詳解;第二部分為關於Hash表演算法的詳細闡述;第三部分為打造一個最快的Hash表演算法。

第一部分:Top K 演算法詳解

問題描述

百度面試題:

搜尋引擎會通過日誌檔案把使用者每次檢索使用的所有檢索串都記錄下來,每個查詢串的長度為1-255位元組。
假設目前有一千萬個記錄(這些查詢串的重複度比較高,雖然總數是1千萬,但如果除去重複後,不超過3百萬個。一個查詢串的重複度越高,說明查詢它的使用者越多,也就是越熱門。),請你統計最熱門的10個查詢串,要求使用的記憶體不能超過1G。

必備知識:

什麼是雜湊表?

雜湊表(Hash table,也叫散列表),是根據關鍵碼值(Key value)而直接進行訪問的資料結構。也就是說,它通過把關鍵碼值對映到表中一個位置來訪問記錄,以加快查詢的速度。這個對映函式叫做雜湊函式,存放記錄的陣列叫做散列表。

雜湊表的做法其實很簡單,就是把Key通過一個固定的演算法函式既所謂的雜湊函式轉換成一個整型數字,然後就將該數字對陣列長度進行取餘,取餘結果就當作陣列的下標,將value儲存在以該數字為下標的陣列空間裡。

而當使用雜湊表進行查詢的時候,就是再次使用雜湊函式將key轉換為對應的陣列下標,並定位到該空間獲取value,如此一來,就可以充分利用到陣列的定位效能進行資料定位文章第二、三部分,會針對Hash表詳細闡述

問題解析:

要統計最熱門查詢,首先就是要統計每個Query出現的次數,然後根據統計結果,找出Top 10。所以我們可以基於這個思路分兩步來設計該演算法。

即,此問題的解決分為以下倆個步驟

第一步:Query統計
Query統計有以下倆個方法,可供選擇:
1、直接排序法
首先我們最先想到的的演算法就是排序了,首先對這個日誌裡面的所有Query都進行排序,然後再遍歷排好序的Query,統計每個Query出現的次數了。

但是題目中有明確要求,那就是記憶體不能超過1G,一千萬條記錄,每條記錄是255Byte,很顯然要佔據2.375G記憶體,這個條件就不滿足要求了。

讓我們回憶一下資料結構課程上的內容,當資料量比較大而且記憶體無法裝下的時候,我們可以採用外排序的方法來進行排序,這裡我們可以採用歸併排序,因為歸併排序有一個比較好的時間複雜度O(NlgN)。

排完序之後我們再對已經有序的Query檔案進行遍歷,統計每個Query出現的次數,再次寫入檔案中。

綜合分析一下,排序的時間複雜度是O(NlgN),而遍歷的時間複雜度是O(N),因此該演算法的總體時間複雜度就是O(N+NlgN)=O(NlgN)。

2、Hash Table法
在第1個方法中,我們採用了排序的辦法來統計每個Query出現的次數,時間複雜度是NlgN,那麼能不能有更好的方法來儲存,而時間複雜度更低呢?

題目中說明了,雖然有一千萬個Query,但是由於重複度比較高,因此事實上只有300萬的Query,每個Query255Byte,因此我們可以考慮把他們都放進記憶體中去,而現在只是需要一個合適的資料結構,在這裡,Hash Table絕對是我們優先的選擇,因為Hash Table的查詢速度非常的快,幾乎是O(1)的時間複雜度。

那麼,我們的演算法就有了:維護一個Key為Query字串,Value為該Query出現次數的HashTable,每次讀取一個Query,如果該字串不在Table中,那麼加入該字串,並且將Value值設為1;如果該字串在Table中,那麼將該字串的計數加一即可。最終我們在O(N)的時間複雜度內完成了對該海量資料的處理。

本方法相比演算法1:在時間複雜度上提高了一個數量級,為O(N),但不僅僅是時間複雜度上的優化,該方法只需要IO資料檔案一次,而演算法1的IO次數較多的,因此該演算法2比演算法1在工程上有更好的可操作性。
第二步:找出Top 10
演算法一:普通排序
我想對於排序演算法大家都已經不陌生了,這裡不在贅述,我們要注意的是排序演算法的時間複雜度是NlgN,在本題目中,三百萬條記錄,用1G記憶體是可以存下的。

演算法二:部分排序
題目要求是求出Top 10,因此我們沒有必要對所有的Query都進行排序,我們只需要維護一個10個大小的陣列,初始化放入10個Query,按照每個Query的統計次數由大到小排序,然後遍歷這300萬條記錄,每讀一條記錄就和陣列最後一個Query對比,如果小於這個Query,那麼繼續遍歷,否則,將陣列中最後一條資料淘汰,加入當前的Query。最後當所有的資料都遍歷完畢之後,那麼這個陣列中的10個Query便是我們要找的Top10了。

不難分析出,這樣,演算法的最壞時間複雜度是N*K, 其中K是指top多少。

演算法三:堆
在演算法二中,我們已經將時間複雜度由NlogN優化到NK,不得不說這是一個比較大的改進了,可是有沒有更好的辦法呢?

分析一下,在演算法二中,每次比較完成之後,需要的操作複雜度都是K,因為要把元素插入到一個線性表之中,而且採用的是順序比較。這裡我們注意一下,該陣列是有序的,一次我們每次查詢的時候可以採用二分的方法查詢,這樣操作的複雜度就降到了logK,可是,隨之而來的問題就是資料移動,因為移動資料次數增多了。不過,這個演算法還是比演算法二有了改進。

基於以上的分析,我們想想,有沒有一種既能快速查詢,又能快速移動元素的資料結構呢?回答是肯定的,那就是堆。
藉助堆結構,我們可以在log量級的時間內查詢和調整/移動。因此到這裡,我們的演算法可以改進為這樣,維護一個K(該題目中是10)大小的小根堆,然後遍歷300萬的Query,分別和根元素進行對比

思想與上述演算法二一致,只是演算法在演算法三,我們採用了最小堆這種資料結構代替陣列,把查詢目標元素的時間複雜度有O(K)降到了O(logK)。
那麼這樣,採用堆資料結構,演算法三,最終的時間複雜度就降到了N‘logK,和演算法二相比,又有了比較大的改進。

總結:
至此,演算法就完全結束了,經過上述第一步、先用Hash表統計每個Query出現的次數,O(N);然後第二步、採用堆資料結構找出Top 10,N*O(logK)。所以,我們最終的時間複雜度是:O(N) + N’*O(logK)。(N為1000萬,N’為300萬)。如果各位有什麼更好的演算法,歡迎留言評論。第一部分,完。

第二部分、Hash表 演算法的詳細解析

什麼是Hash
 Hash,一般翻譯做“雜湊”,也有直接音譯為“雜湊”的,就是把任意長度的輸入(又叫做預對映, pre-image),通過雜湊演算法,變換成固定長度的輸出,該輸出就是雜湊值。這種轉換是一種壓縮對映,也就是,雜湊值的空間通常遠小於輸入的空間,不同的輸入可能會雜湊成相同的輸出,而不可能從雜湊值來唯一的確定輸入值。簡單的說就是一種將任意長度的訊息壓縮到某一固定長度的訊息摘要的函式。

HASH主要用於資訊保安領域中加密演算法,它把一些不同長度的資訊轉化成雜亂的128位的編碼,這些編碼值叫做HASH值. 也可以說,hash就是找到一種資料內容和資料存放地址之間的對映關係。

陣列的特點是:定址容易,插入和刪除困難;而連結串列的特點是:定址困難,插入和刪除容易。那麼我們能不能綜合兩者的特性,做出一種定址容易,插入刪除也容易的資料結構?答案是肯定的,這就是我們要提起的雜湊表,雜湊表有多種不同的實現方法,我接下來解釋的是最常用的一種方法——拉鍊法,我們可以理解為“連結串列的陣列”,如圖:

ctdwcdjxhxbsf01
左邊很明顯是個陣列,陣列的每個成員包括一個指標,指向一個連結串列的頭,當然這個連結串列可能為空,也可能元素很多。我們根據元素的一些特徵把元素分配到不同的連結串列中去,也是根據這些特徵,找到正確的連結串列,再從連結串列中找出這個元素。

元素特徵轉變為陣列下標的方法就是雜湊法。雜湊法當然不止一種,下面列出三種比較常用的:

1,除法雜湊法
最直觀的一種,上圖使用的就是這種雜湊法,公式:
index = value % 16
學過彙編的都知道,求模數其實是通過一個除法運算得到的,所以叫“除法雜湊法”。

2,平方雜湊法
求index是非常頻繁的操作,而乘法的運算要比除法來得省時(對現在的CPU來說,估計我們感覺不出來),所以我們考慮把除法換成乘法和一個位移操作。公式:
index = (value * value) >> 28   右移,除以2^28。記法:左移變大,是乘。右移變小,是除。
如果數值分配比較均勻的話這種方法能得到不錯的結果,但我上面畫的那個圖的各個元素的值算出來的index都是0——非常失敗。也許你還有個問題,value如果很大,value * value不會溢位嗎?答案是會的,但我們這個乘法不關心溢位,因為我們根本不是為了獲取相乘結果,而是為了獲取index。

3,斐波那契(Fibonacci)雜湊法

平方雜湊法的缺點是顯而易見的,所以我們能不能找出一個理想的乘數,而不是拿value本身當作乘數呢?答案是肯定的。

1,對於16位整數而言,這個乘數是40503
2,對於32位整數而言,這個乘數是2654435769
3,對於64位整數而言,這個乘數是11400714819323198485

這幾個“理想乘數”是如何得出來的呢?這跟一個法則有關,叫黃金分割法則,而描述黃金分割法則的最經典表示式無疑就是著名的斐波那契數列,即如此形式的序列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,…。另外,斐波那契數列的值和太陽系八大行星的軌道半徑的比例出奇吻合。

對我們常見的32位整數而言,公式:
index = (value * 2654435769) >> 28

如果用這種斐波那契雜湊法的話,那上面的圖就變成這樣了:

ctdwcdjxhxbsf02
很明顯,用斐波那契雜湊法調整之後要比原來的取摸雜湊法好很多。

適用範圍
快速查詢,刪除的基本資料結構,通常需要總資料量可以放入記憶體。

基本原理及要點
hash函式選擇,針對字串,整數,排列,具體相應的hash方法。
碰撞處理,一種是open hashing,也稱為拉鍊法;另一種就是closed hashing,也稱開地址法,opened addressing。

擴充套件
d-left hashing中的d是多個的意思,我們先簡化這個問題,看一看2-left hashing。2-left hashing指的是將一個雜湊表分成長度相等的兩半,分別叫做T1和T2,給T1和T2分別配備一個雜湊函式,h1和h2。在儲存一個新的key時,同 時用兩個雜湊函式進行計算,得出兩個地址h1[key]和h2[key]。這時需要檢查T1中的h1[key]位置和T2中的h2[key]位置,哪一個 位置已經儲存的(有碰撞的)key比較多,然後將新key儲存在負載少的位置。如果兩邊一樣多,比如兩個位置都為空或者都儲存了一個key,就把新key 儲存在左邊的T1子表中,2-left也由此而來。在查詢一個key時,必須進行兩次hash,同時查詢兩個位置。

問題例項(海量資料處理)
我們知道hash 表在海量資料處理中有著廣泛的應用,下面,請看另一道百度面試題:
題目:海量日誌資料,提取出某日訪問百度次數最多的那個IP。
方案:IP的數目還是有限的,最多2^32個,所以可以考慮使用hash將ip直接存入記憶體,然後進行統計。

第三部分、最快的Hash表演算法

接下來,咱們來具體分析一下一個最快的Hasb表演算法。
我們由一個簡單的問題逐步入手:有一個龐大的字串陣列,然後給你一個單獨的字串,讓你從這個陣列中查詢是否有這個字串並找到它,你會怎麼做?有一個方法最簡單,老老實實從頭查到尾,一個一個比較,直到找到為止,我想只要學過程式設計的人都能把這樣一個程式作出來,但要是有程式設計師把這樣的程式交給使用者,我只能用無語來評價,或許它真的能工作,但…也只能如此了。

最合適的演算法自然是使用HashTable(雜湊表),先介紹介紹其中的基本知識,所謂Hash,一般是一個整數,通過某種演算法,可以把一個字串”壓縮” 成一個整數。當然,無論如何,一個32位整數是無法對應回一個字串的,但在程式中,兩個字串計算出的Hash值相等的可能非常小,下面看看在MPQ中的Hash演算法:

函式一、以下的函式生成一個長度為0x500(合10進位制數:1280)的cryptTable[0x500]