1. 程式人生 > >字串 hash演算法

字串 hash演算法

基本概念
所謂完美雜湊函式,就是指沒有衝突的雜湊函式,即對任意的 key1 != key2 有h(key1) != h(key2)。
設定義域為X,值域為Y, n=|X|,m=|Y|,那麼肯定有m>=n,如果對於不同的key1,key2屬於X,有h(key1)!=h(key2),那麼稱h為完美雜湊函式,當m=n時,h稱為最小完美雜湊函式(這個時候就是一一映射了)。

在處理大規模字串資料時,經常要為每個字串分配一個整數ID。這就需要一個字串的雜湊函式。怎麼樣找到一個完美的字串hash函式呢?
有一些常用的字串hash函式。像BKDRHash,APHash,DJBHash,JSHash,RSHash,SDBMHash,PJWHash,ELFHash等等。都是比較經典的。

常用的字串Hash函式還有ELFHash,APHash等等,都是十分簡單有效的方法。這些函式使用位運算使得每一個字元都對最後的函式值產生影響。另外還有以MD5和SHA1為代表的雜湊函式,這些函式幾乎不可能找到碰撞。

常用字串雜湊函式有 BKDRHash,APHash,DJBHash,JSHash,RSHash,SDBMHash,PJWHash,ELFHash等等。對於以上幾種雜湊函式,我對其進行了一個小小的評測。

Hash函式 資料1 資料2 資料3 資料4 資料1得分 資料2得分 資料3得分 資料4得分 平均分
BKDRHash 2 0 4774 481 96.55 100 90.95 82.05 92.64
APHash 2 3 4754 493 96.55 88.46 100 51.28 86.28
DJBHash 2 2 4975 474 96.55 92.31 0 100 83.43
JSHash 1 4 4761 506 100 84.62 96.83 17.95 81.94
RSHash 1 0 4861 505 100 100 51.58 20.51 75.96
SDBMHash 3 2 4849 504 93.1 92.31 57.01 23.08 72.41
PJWHash 30 26 4878 513 0 0 43.89 0 21.95
ELFHash 30 26 4878 513 0 0 43.89 0 21.95

其中資料1為100000個字母和數字組成的隨機串雜湊衝突個數。資料2為100000個有意義的英文句子雜湊衝突個數。資料3為資料1的雜湊值與 1000003(大素數)求模後儲存到線性表中衝突的個數。資料4為資料1的雜湊值與10000019(更大素數)求模後儲存到線性表中衝突的個數。

經過比較,得出以上平均得分。平均數為平方平均數。可以發現,BKDRHash無論是在實際效果還是編碼實現中,效果都是最突出的。APHash也是較為優秀的演算法。DJBHash,JSHash,RSHash與SDBMHash各有千秋。PJWHash與ELFHash效果最差,但得分相似,其演算法本質是相似的。

在資訊修競賽中,要本著易於編碼除錯的原則,個人認為BKDRHash是最適合記憶和使用的。 

演算法實現

unsigned int SDBMHash(char *str)
{
    unsigned int hash = 0;
 
    while (*str)
    {
        // equivalent to: hash = 65599*hash + (*str++);
        hash = (*str++) + (hash << 6) + (hash << 16) - hash;
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// RS Hash Function
unsigned int RSHash(char *str)
{
    unsigned int b = 378551;
    unsigned int a = 63689;
    unsigned int hash = 0;
 
    while (*str)
    {
        hash = hash * a + (*str++);
        a *= b;
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// JS Hash Function
unsigned int JSHash(char *str)
{
    unsigned int hash = 1315423911;
 
    while (*str)
    {
        hash ^= ((hash << 5) + (*str++) + (hash >> 2));
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// P. J. Weinberger Hash Function
unsigned int PJWHash(char *str)
{
    unsigned int BitsInUnignedInt = (unsigned int)(sizeof(unsigned int) * 8);
    unsigned int ThreeQuarters    = (unsigned int)((BitsInUnignedInt  * 3) / 4);
    unsigned int OneEighth        = (unsigned int)(BitsInUnignedInt / 8);
    unsigned int HighBits         = (unsigned int)(0xFFFFFFFF) << (BitsInUnignedInt - OneEighth);
    unsigned int hash             = 0;
    unsigned int test             = 0;
 
    while (*str)
    {
        hash = (hash << OneEighth) + (*str++);
        if ((test = hash & HighBits) != 0)
        {
            hash = ((hash ^ (test >> ThreeQuarters)) & (~HighBits));
        }
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// ELF Hash Function
unsigned int ELFHash(char *str)
{
    unsigned int hash = 0;
    unsigned int x    = 0;
 
    while (*str)
    {
        hash = (hash << 4) + (*str++);
        if ((x = hash & 0xF0000000L) != 0)
        {
            hash ^= (x >> 24);
            hash &= ~x;
        }
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// BKDR Hash Function
unsigned int BKDRHash(char *str)
{
    unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
    unsigned int hash = 0;
 
    while (*str)
    {
        hash = hash * seed + (*str++);
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// DJB Hash Function
unsigned int DJBHash(char *str)
{
    unsigned int hash = 5381;
 
    while (*str)
    {
        hash += (hash << 5) + (*str++);
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// AP Hash Function
unsigned int APHash(char *str)
{
    unsigned int hash = 0;
    int i;
 
    for (i=0; *str; i++)
    {
        if ((i & 1) == 0)
        {
            hash ^= ((hash << 7) ^ (*str++) ^ (hash >> 3));
        }
        else
        {
            hash ^= (~((hash << 11) ^ (*str++) ^ (hash >> 5)));
        }
    }
 
    return (hash & 0x7FFFFFFF);
}