1. 程式人生 > >MySQL 深入理解索引B+樹儲存 (二)

MySQL 深入理解索引B+樹儲存 (二)

摘要

本文以MySQL資料庫為研究物件,討論與資料庫索引相關的一些話題。特別需要說明的是,MySQL支援諸多儲存引擎,而各種儲存引擎對索引的支援也各不相同,因此MySQL資料庫支援多種索引型別,如BTree索引,雜湊索引,全文索引等等。為了避免混亂,本文將只關注於BTree索引,因為這是平常使用MySQL時主要打交道的索引,至於雜湊索引和全文索引本文暫不討論。

文章主要內容分為三個部分。

第一部分主要從資料結構及演算法理論層面討論MySQL資料庫索引的數理基礎。

第二部分結合MySQL資料庫中MyISAM和InnoDB資料儲存引擎中索引的架構實現討論聚集索引、非聚集索引及覆蓋索引等話題。

第三部分根據上面的理論基礎,討論MySQL中高效能使用索引的策略。

資料結構及演算法基礎

索引的本質

MySQL官方對索引的定義為:索引(Index)是幫助MySQL高效獲取資料的資料結構。提取句子主幹,就可以得到索引的本質:索引是資料結構。

我們知道,資料庫查詢是資料庫的最主要功能之一。我們都希望查詢資料的速度能儘可能的快,因此資料庫系統的設計者會從查詢演算法的角度進行優化。最基本的查詢演算法當然是順序查詢(linear search),這種複雜度為O(n)的演算法在資料量很大時顯然是糟糕的,好在電腦科學的發展提供了很多更優秀的查詢演算法,例如二分查詢(binary search)、

二叉樹查詢(binary tree search)等。如果稍微分析一下會發現,每種查詢演算法都只能應用於特定的資料結構之上,例如二分查詢要求被檢索資料有序,而二叉樹查詢只能應用於二叉查詢樹上,但是資料本身的組織結構不可能完全滿足各種資料結構(例如,理論上不可能同時將兩列都按順序進行組織),所以,在資料之外,資料庫系統還維護著滿足特定查詢演算法的資料結構,這些資料結構以某種方式引用(指向)資料,這樣就可以在這些資料結構上實現高階查詢演算法。這種資料結構,就是索引。

看一個例子:

圖1

圖1展示了一種可能的索引方式。左邊是資料表,一共有兩列七條記錄,最左邊的是資料記錄的實體地址(注意邏輯上相鄰的記錄在磁碟上也並不是一定物理相鄰的)。為了加快Col2的查詢,可以維護一個右邊所示的二叉查詢樹,每個節點分別包含索引鍵值和一個指向對應資料記錄實體地址的指標,這樣就可以運用二叉查詢在O

(log2n)O(log2n)的複雜度內獲取到相應資料。

雖然這是一個貨真價實的索引,但是實際的資料庫系統幾乎沒有使用二叉查詢樹或其進化品種紅黑樹(red-black tree)實現的,原因會在下文介紹。

B-Tree和B+Tree

目前大部分資料庫系統及檔案系統都採用B-Tree或其變種B+Tree作為索引結構,在本文的下一節會結合儲存器原理及計算機存取原理討論為什麼B-Tree和B+Tree在被如此廣泛用於索引,這一節先單純從資料結構角度描述它們。

B-Tree

為了描述B-Tree,首先定義一條資料記錄為一個二元組[key, data],key為記錄的鍵值,對於不同資料記錄,key是互不相同的;data為資料記錄除key外的資料。那麼B-Tree是滿足下列條件的資料結構:

d為大於1的一個正整數,稱為B-Tree的度。

h為一個正整數,稱為B-Tree的高度。

每個非葉子節點由n-1個key和n個指標組成,其中d<=n<=2d。

每個葉子節點最少包含一個key和兩個指標,最多包含2d-1個key和2d個指標,葉節點的指標均為null 。

所有葉節點具有相同的深度,等於樹高h。

key和指標互相間隔,節點兩端是指標。

一個節點中的key從左到右非遞減排列。

所有節點組成樹結構。

每個指標要麼為null,要麼指向另外一個節點。

如果某個指標在節點node最左邊且不為null,則其指向節點的所有key小於v(key1)v(key1),其中v(key1)v(key1)為node的第一個key的值。

如果某個指標在節點node最右邊且不為null,則其指向節點的所有key大於v(keym)v(keym),其中v(keym)v(keym)為node的最後一個key的值。

如果某個指標在節點node的左右相鄰key分別是keyikeyikeyi+1keyi+1且不為null,則其指向節點的所有key小於v(keyi+1)v(keyi+1)且大於v(keyi)v(keyi)

圖2是一個d=2的B-Tree示意圖。

圖2

由於B-Tree的特性,在B-Tree中按key檢索資料的演算法非常直觀:首先從根節點進行二分查詢,如果找到則返回對應節點的data,否則對相應區間的指標指向的節點遞迴進行查詢,直到找到節點或找到null指標,前者查詢成功,後者查詢失敗。B-Tree上查詢演算法的虛擬碼如下:

  1. BTree_Search(node, key){
  2. if(node ==null)returnnull;
  3. foreach(node.key)
  4. {
  5. if(node.key[i]== key)return node.data[i];
  6. if(node.key[i]> key)returnBTree_Search(point[i]->node);
  7. }
  8. returnBTree_Search(point[i+1]->node);
  9. }
  10. data =BTree_Search(root, my_key);
關於B-Tree有一系列有趣的性質,例如一個度為d的B-Tree,設其索引N個key,則其樹高h的上限為logd((N+1)/2)logd((N+1)/2),檢索一個key,其查詢節點個數的漸進複雜度為O(logdN)O(logdN)。從這點可以看出,B-Tree是一個非常有效率的索引資料結構。

另外,由於插入刪除新的資料記錄會破壞B-Tree的性質,因此在插入刪除時,需要對樹進行一個分裂、合併、轉移等操作以保持B-Tree性質,本文不打算完整討論B-Tree這些內容,因為已經有許多資料詳細說明了B-Tree的數學性質及插入刪除演算法,有興趣的朋友可以在本文末的參考文獻一欄找到相應的資料進行閱讀。

B+Tree

B-Tree有許多變種,其中最常見的是B+Tree,例如MySQL就普遍使用B+Tree實現其索引結構。

與B-Tree相比,B+Tree有以下不同點:

每個節點的指標上限為2d而不是2d+1。

內節點不儲存data,只儲存key;葉子節點不儲存指標。

圖3是一個簡單的B+Tree示意。

圖3

由於並不是所有節點都具有相同的域,因此B+Tree中葉節點和內節點一般大小不同。這點與B-Tree不同,雖然B-Tree中不同節點存放的key和指標可能數量不一致,但是每個節點的域和上限是一致的,所以在實現中B-Tree往往對每個節點申請同等大小的空間。

一般來說,B+Tree比B-Tree更適合實現外儲存索引結構,具體原因與外儲存器原理及計算機存取原理有關,將在下面討論。

帶有順序訪問指標的B+Tree

一般在資料庫系統或檔案系統中使用的B+Tree結構都在經典B+Tree的基