1. 程式人生 > >spi 主機控制器驅動(spi_master)

spi 主機控制器驅動(spi_master)

spi_master
/* linux/drivers/spi/spi_s3c24xx.c
 *
 * Copyright (c) 2006 Ben Dooks
 * Copyright (c) 2006 Simtec Electronics
 *	Ben Dooks <[email protected]>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
*/

#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/gpio.h>
#include <linux/io.h>

#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>

#include <plat/regs-spi.h>
#include <mach/spi.h>

/**
 * s3c24xx_spi_devstate - per device data
 * @hz: Last frequency calculated for @sppre field.
 * @mode: Last mode setting for the @spcon field.
 * @spcon: Value to write to the SPCON register.
 * @sppre: Value to write to the SPPRE register.
 */
struct s3c24xx_spi_devstate {
	unsigned int	hz;
	unsigned int	mode;
	u8		spcon;
	u8		sppre;
};

struct s3c24xx_spi {
	/* bitbang has to be first */
	struct spi_bitbang	 bitbang;
	struct completion	 done;

	void __iomem		*regs;
	int			 irq;
	int			 len;
	int			 count;

	void			(*set_cs)(struct s3c2410_spi_info *spi,
					  int cs, int pol);

	/* data buffers */
	const unsigned char	*tx;
	unsigned char		*rx;

	struct clk		*clk;
	struct resource		*ioarea;
	struct spi_master	*master;
	struct spi_device	*curdev;
	struct device		*dev;
	struct s3c2410_spi_info *pdata;
};

#define SPCON_DEFAULT (S3C2410_SPCON_MSTR | S3C2410_SPCON_SMOD_INT)
#define SPPIN_DEFAULT (S3C2410_SPPIN_KEEP)

static inline struct s3c24xx_spi *to_hw(struct spi_device *sdev)
{
	return spi_master_get_devdata(sdev->master);
}

static void s3c24xx_spi_gpiocs(struct s3c2410_spi_info *spi, int cs, int pol)
{
	gpio_set_value(spi->pin_cs, pol);
}

static void s3c24xx_spi_chipsel(struct spi_device *spi, int value)
{
	struct s3c24xx_spi_devstate *cs = spi->controller_state;
	struct s3c24xx_spi *hw = to_hw(spi);
	unsigned int cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;

	/* change the chipselect state and the state of the spi engine clock */

	switch (value) {
	case BITBANG_CS_INACTIVE:
		hw->set_cs(hw->pdata, spi->chip_select, cspol^1);
		writeb(cs->spcon, hw->regs + S3C2410_SPCON);
		break;

	case BITBANG_CS_ACTIVE:
		writeb(cs->spcon | S3C2410_SPCON_ENSCK,
		       hw->regs + S3C2410_SPCON);
		hw->set_cs(hw->pdata, spi->chip_select, cspol);
		break;
	}
}

static int s3c24xx_spi_update_state(struct spi_device *spi,
				    struct spi_transfer *t)
{
	struct s3c24xx_spi *hw = to_hw(spi);
	struct s3c24xx_spi_devstate *cs = spi->controller_state;
	unsigned int bpw;
	unsigned int hz;
	unsigned int div;
	unsigned long clk;

	bpw = t ? t->bits_per_word : spi->bits_per_word;
	hz  = t ? t->speed_hz : spi->max_speed_hz;

	if (!bpw)
		bpw = 8;

	if (!hz)
		hz = spi->max_speed_hz;

	if (bpw != 8) {
		dev_err(&spi->dev, "invalid bits-per-word (%d)\n", bpw);
		return -EINVAL;
	}

	if (spi->mode != cs->mode) {
		u8 spcon = SPCON_DEFAULT;

		if (spi->mode & SPI_CPHA)
			spcon |= S3C2410_SPCON_CPHA_FMTB;

		if (spi->mode & SPI_CPOL)
			spcon |= S3C2410_SPCON_CPOL_HIGH;

		cs->mode = spi->mode;
		cs->spcon = spcon;
	}

	if (cs->hz != hz) {
		clk = clk_get_rate(hw->clk);
		div = DIV_ROUND_UP(clk, hz * 2) - 1;

		if (div > 255)
			div = 255;

		dev_dbg(&spi->dev, "pre-scaler=%d (wanted %d, got %ld)\n",
			div, hz, clk / (2 * (div + 1)));

		cs->hz = hz;
		cs->sppre = div;
	}

	return 0;
}

static int s3c24xx_spi_setupxfer(struct spi_device *spi,
				 struct spi_transfer *t)
{
	struct s3c24xx_spi_devstate *cs = spi->controller_state;
	struct s3c24xx_spi *hw = to_hw(spi);
	int ret;

	ret = s3c24xx_spi_update_state(spi, t);
	if (!ret)
		writeb(cs->sppre, hw->regs + S3C2410_SPPRE);

	return ret;
}

static int s3c24xx_spi_setup(struct spi_device *spi)
{
	struct s3c24xx_spi_devstate *cs = spi->controller_state;
	struct s3c24xx_spi *hw = to_hw(spi);
	int ret;

	/* allocate settings on the first call */
	if (!cs) {
		cs = kzalloc(sizeof(struct s3c24xx_spi_devstate), GFP_KERNEL);
		if (!cs) {
			dev_err(&spi->dev, "no memory for controller state\n");
			return -ENOMEM;
		}

		cs->spcon = SPCON_DEFAULT;
		cs->hz = -1;
		spi->controller_state = cs;
	}

	/* initialise the state from the device */
	ret = s3c24xx_spi_update_state(spi, NULL);
	if (ret)
		return ret;

	spin_lock(&hw->bitbang.lock);
	if (!hw->bitbang.busy) {
		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
		/* need to ndelay for 0.5 clocktick ? */
	}
	spin_unlock(&hw->bitbang.lock);

	return 0;
}

static void s3c24xx_spi_cleanup(struct spi_device *spi)
{
	kfree(spi->controller_state);
}

static inline unsigned int hw_txbyte(struct s3c24xx_spi *hw, int count)
{
	return hw->tx ? hw->tx[count] : 0;
}

static int s3c24xx_spi_txrx(struct spi_device *spi, struct spi_transfer *t)
{
	struct s3c24xx_spi *hw = to_hw(spi);

	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
		t->tx_buf, t->rx_buf, t->len);

	hw->tx = t->tx_buf;
	hw->rx = t->rx_buf;
	hw->len = t->len;
	hw->count = 0;

	init_completion(&hw->done);

	/* send the first byte */
	writeb(hw_txbyte(hw, 0), hw->regs + S3C2410_SPTDAT);

	wait_for_completion(&hw->done);

	return hw->count;
}

static irqreturn_t s3c24xx_spi_irq(int irq, void *dev)
{
	struct s3c24xx_spi *hw = dev;
	unsigned int spsta = readb(hw->regs + S3C2410_SPSTA);
	unsigned int count = hw->count;

	if (spsta & S3C2410_SPSTA_DCOL) {
		dev_dbg(hw->dev, "data-collision\n");
		complete(&hw->done);
		goto irq_done;
	}

	if (!(spsta & S3C2410_SPSTA_READY)) {
		dev_dbg(hw->dev, "spi not ready for tx?\n");
		complete(&hw->done);
		goto irq_done;
	}

	hw->count++;

	if (hw->rx)
		hw->rx[count] = readb(hw->regs + S3C2410_SPRDAT);

	count++;

	if (count < hw->len)
		writeb(hw_txbyte(hw, count), hw->regs + S3C2410_SPTDAT);
	else
		complete(&hw->done);

 irq_done:
	return IRQ_HANDLED;
}

static void s3c24xx_spi_initialsetup(struct s3c24xx_spi *hw)
{
	/* for the moment, permanently enable the clock */

	clk_enable(hw->clk);

	/* program defaults into the registers */

	writeb(0xff, hw->regs + S3C2410_SPPRE);
	writeb(SPPIN_DEFAULT, hw->regs + S3C2410_SPPIN);
	writeb(SPCON_DEFAULT, hw->regs + S3C2410_SPCON);

	if (hw->pdata) {
		if (hw->set_cs == s3c24xx_spi_gpiocs)
			gpio_direction_output(hw->pdata->pin_cs, 1);

		if (hw->pdata->gpio_setup)
			hw->pdata->gpio_setup(hw->pdata, 1);
	}
}

static int __init s3c24xx_spi_probe(struct platform_device *pdev)
{
	struct s3c2410_spi_info *pdata;
	struct s3c24xx_spi *hw;
	struct spi_master *master;
	struct resource *res;
	int err = 0;

	master = spi_alloc_master(&pdev->dev, sizeof(struct s3c24xx_spi));
	if (master == NULL) {
		dev_err(&pdev->dev, "No memory for spi_master\n");
		err = -ENOMEM;
		goto err_nomem;
	}

	hw = spi_master_get_devdata(master);
	memset(hw, 0, sizeof(struct s3c24xx_spi));

	hw->master = spi_master_get(master);
	hw->pdata = pdata = pdev->dev.platform_data;
	hw->dev = &pdev->dev;

	if (pdata == NULL) {
		dev_err(&pdev->dev, "No platform data supplied\n");
		err = -ENOENT;
		goto err_no_pdata;
	}

	platform_set_drvdata(pdev, hw);
	init_completion(&hw->done);

	/* setup the master state. */

	/* the spi->mode bits understood by this driver: */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;

	master->num_chipselect = hw->pdata->num_cs;
	master->bus_num = pdata->bus_num;

	/* setup the state for the bitbang driver */

	hw->bitbang.master         = hw->master;
	hw->bitbang.setup_transfer = s3c24xx_spi_setupxfer;
	hw->bitbang.chipselect     = s3c24xx_spi_chipsel;
	hw->bitbang.txrx_bufs      = s3c24xx_spi_txrx;

	hw->master->setup  = s3c24xx_spi_setup;
	hw->master->cleanup = s3c24xx_spi_cleanup;

	dev_dbg(hw->dev, "bitbang at %p\n", &hw->bitbang);

	/* find and map our resources */

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (res == NULL) {
		dev_err(&pdev->dev, "Cannot get IORESOURCE_MEM\n");
		err = -ENOENT;
		goto err_no_iores;
	}

	hw->ioarea = request_mem_region(res->start, resource_size(res),
					pdev->name);

	if (hw->ioarea == NULL) {
		dev_err(&pdev->dev, "Cannot reserve region\n");
		err = -ENXIO;
		goto err_no_iores;
	}

	hw->regs = ioremap(res->start, resource_size(res));
	if (hw->regs == NULL) {
		dev_err(&pdev->dev, "Cannot map IO\n");
		err = -ENXIO;
		goto err_no_iomap;
	}

	hw->irq = platform_get_irq(pdev, 0);
	if (hw->irq < 0) {
		dev_err(&pdev->dev, "No IRQ specified\n");
		err = -ENOENT;
		goto err_no_irq;
	}

	err = request_irq(hw->irq, s3c24xx_spi_irq, 0, pdev->name, hw);
	if (err) {
		dev_err(&pdev->dev, "Cannot claim IRQ\n");
		goto err_no_irq;
	}

	hw->clk = clk_get(&pdev->dev, "spi");
	if (IS_ERR(hw->clk)) {
		dev_err(&pdev->dev, "No clock for device\n");
		err = PTR_ERR(hw->clk);
		goto err_no_clk;
	}

	/* setup any gpio we can */

	if (!pdata->set_cs) {
		if (pdata->pin_cs < 0) {
			dev_err(&pdev->dev, "No chipselect pin\n");
			goto err_register;
		}

		err = gpio_request(pdata->pin_cs, dev_name(&pdev->dev));
		if (err) {
			dev_err(&pdev->dev, "Failed to get gpio for cs\n");
			goto err_register;
		}

		hw->set_cs = s3c24xx_spi_gpiocs;
		gpio_direction_output(pdata->pin_cs, 1);
	} else
		hw->set_cs = pdata->set_cs;

	s3c24xx_spi_initialsetup(hw);

	/* register our spi controller */

	err = spi_bitbang_start(&hw->bitbang);
	if (err) {
		dev_err(&pdev->dev, "Failed to register SPI master\n");
		goto err_register;
	}

	return 0;

 err_register:
	if (hw->set_cs == s3c24xx_spi_gpiocs)
		gpio_free(pdata->pin_cs);

	clk_disable(hw->clk);
	clk_put(hw->clk);

 err_no_clk:
	free_irq(hw->irq, hw);

 err_no_irq:
	iounmap(hw->regs);

 err_no_iomap:
	release_resource(hw->ioarea);
	kfree(hw->ioarea);

 err_no_iores:
 err_no_pdata:
	spi_master_put(hw->master);

 err_nomem:
	return err;
}

static int __exit s3c24xx_spi_remove(struct platform_device *dev)
{
	struct s3c24xx_spi *hw = platform_get_drvdata(dev);

	platform_set_drvdata(dev, NULL);

	spi_unregister_master(hw->master);

	clk_disable(hw->clk);
	clk_put(hw->clk);

	free_irq(hw->irq, hw);
	iounmap(hw->regs);

	if (hw->set_cs == s3c24xx_spi_gpiocs)
		gpio_free(hw->pdata->pin_cs);

	release_resource(hw->ioarea);
	kfree(hw->ioarea);

	spi_master_put(hw->master);
	return 0;
}


#ifdef CONFIG_PM

static int s3c24xx_spi_suspend(struct device *dev)
{
	struct s3c24xx_spi *hw = platform_get_drvdata(to_platform_device(dev));

	if (hw->pdata && hw->pdata->gpio_setup)
		hw->pdata->gpio_setup(hw->pdata, 0);

	clk_disable(hw->clk);
	return 0;
}

static int s3c24xx_spi_resume(struct device *dev)
{
	struct s3c24xx_spi *hw = platform_get_drvdata(to_platform_device(dev));

	s3c24xx_spi_initialsetup(hw);
	return 0;
}

static struct dev_pm_ops s3c24xx_spi_pmops = {
	.suspend	= s3c24xx_spi_suspend,
	.resume		= s3c24xx_spi_resume,
};

#define S3C24XX_SPI_PMOPS &s3c24xx_spi_pmops
#else
#define S3C24XX_SPI_PMOPS NULL
#endif /* CONFIG_PM */

MODULE_ALIAS("platform:s3c2410-spi");
static struct platform_driver s3c24xx_spi_driver = {
	.remove		= __exit_p(s3c24xx_spi_remove),
	.driver		= {
		.name	= "s3c2410-spi",
		.owner	= THIS_MODULE,
		.pm	= S3C24XX_SPI_PMOPS,
	},
};

static int __init s3c24xx_spi_init(void)
{
        return platform_driver_probe(&s3c24xx_spi_driver, s3c24xx_spi_probe);
}

static void __exit s3c24xx_spi_exit(void)
{
        platform_driver_unregister(&s3c24xx_spi_driver);
}

module_init(s3c24xx_spi_init);
module_exit(s3c24xx_spi_exit);

MODULE_DESCRIPTION("S3C24XX SPI Driver");
MODULE_AUTHOR("Ben Dooks, <
[email protected]
>"); MODULE_LICENSE("GPL");


/*
 * spi_bitbang.c - polling/bitbanging SPI master controller driver utilities
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/platform_device.h>

#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>


/*----------------------------------------------------------------------*/

/*
 * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
 * Use this for GPIO or shift-register level hardware APIs.
 *
 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
 * to glue code.  These bitbang setup() and cleanup() routines are always
 * used, though maybe they're called from controller-aware code.
 *
 * chipselect() and friends may use use spi_device->controller_data and
 * controller registers as appropriate.
 *
 *
 * NOTE:  SPI controller pins can often be used as GPIO pins instead,
 * which means you could use a bitbang driver either to get hardware
 * working quickly, or testing for differences that aren't speed related.
 */

struct spi_bitbang_cs {
	unsigned	nsecs;	/* (clock cycle time)/2 */
	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
					u32 word, u8 bits);
	unsigned	(*txrx_bufs)(struct spi_device *,
					u32 (*txrx_word)(
						struct spi_device *spi,
						unsigned nsecs,
						u32 word, u8 bits),
					unsigned, struct spi_transfer *);
};

static unsigned bitbang_txrx_8(
	struct spi_device	*spi,
	u32			(*txrx_word)(struct spi_device *spi,
					unsigned nsecs,
					u32 word, u8 bits),
	unsigned		ns,
	struct spi_transfer	*t
) {
	unsigned		bits = spi->bits_per_word;
	unsigned		count = t->len;
	const u8		*tx = t->tx_buf;
	u8			*rx = t->rx_buf;

	while (likely(count > 0)) {
		u8		word = 0;

		if (tx)
			word = *tx++;
		word = txrx_word(spi, ns, word, bits);
		if (rx)
			*rx++ = word;
		count -= 1;
	}
	return t->len - count;
}

static unsigned bitbang_txrx_16(
	struct spi_device	*spi,
	u32			(*txrx_word)(struct spi_device *spi,
					unsigned nsecs,
					u32 word, u8 bits),
	unsigned		ns,
	struct spi_transfer	*t
) {
	unsigned		bits = spi->bits_per_word;
	unsigned		count = t->len;
	const u16		*tx = t->tx_buf;
	u16			*rx = t->rx_buf;

	while (likely(count > 1)) {
		u16		word = 0;

		if (tx)
			word = *tx++;
		word = txrx_word(spi, ns, word, bits);
		if (rx)
			*rx++ = word;
		count -= 2;
	}
	return t->len - count;
}

static unsigned bitbang_txrx_32(
	struct spi_device	*spi,
	u32			(*txrx_word)(struct spi_device *spi,
					unsigned nsecs,
					u32 word, u8 bits),
	unsigned		ns,
	struct spi_transfer	*t
) {
	unsigned		bits = spi->bits_per_word;
	unsigned		count = t->len;
	const u32		*tx = t->tx_buf;
	u32			*rx = t->rx_buf;

	while (likely(count > 3)) {
		u32		word = 0;

		if (tx)
			word = *tx++;
		word = txrx_word(spi, ns, word, bits);
		if (rx)
			*rx++ = word;
		count -= 4;
	}
	return t->len - count;
}

int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct spi_bitbang_cs	*cs = spi->controller_state;
	u8			bits_per_word;
	u32			hz;

	if (t) {
		bits_per_word = t->bits_per_word;
		hz = t->speed_hz;
	} else {
		bits_per_word = 0;
		hz = 0;
	}

	/* spi_transfer level calls that work per-word */
	if (!bits_per_word)
		bits_per_word = spi->bits_per_word;
	if (bits_per_word <= 8)
		cs->txrx_bufs = bitbang_txrx_8;
	else if (bits_per_word <= 16)
		cs->txrx_bufs = bitbang_txrx_16;
	else if (bits_per_word <= 32)
		cs->txrx_bufs = bitbang_txrx_32;
	else
		return -EINVAL;

	/* nsecs = (clock period)/2 */
	if (!hz)
		hz = spi->max_speed_hz;
	if (hz) {
		cs->nsecs = (1000000000/2) / hz;
		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
			return -EINVAL;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);

/**
 * spi_bitbang_setup - default setup for per-word I/O loops
 */
int spi_bitbang_setup(struct spi_device *spi)
{
	struct spi_bitbang_cs	*cs = spi->controller_state;
	struct spi_bitbang	*bitbang;
	int			retval;
	unsigned long		flags;

	bitbang = spi_master_get_devdata(spi->master);

	if (!cs) {
		cs = kzalloc(sizeof *cs, GFP_KERNEL);
		if (!cs)
			return -ENOMEM;
		spi->controller_state = cs;
	}

	/* per-word shift register access, in hardware or bitbanging */
	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
	if (!cs->txrx_word)
		return -EINVAL;

	retval = bitbang->setup_transfer(spi, NULL);
	if (retval < 0)
		return retval;

	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);

	/* NOTE we _need_ to call chipselect() early, ideally with adapter
	 * setup, unless the hardware defaults cooperate to avoid confusion
	 * between normal (active low) and inverted chipselects.
	 */

	/* deselect chip (low or high) */
	spin_lock_irqsave(&bitbang->lock, flags);
	if (!bitbang->busy) {
		bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
		ndelay(cs->nsecs);
	}
	spin_unlock_irqrestore(&bitbang->lock, flags);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bitbang_setup);

/**
 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
 */
void spi_bitbang_cleanup(struct spi_device *spi)
{
	kfree(spi->controller_state);
}
EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);

static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
{
	struct spi_bitbang_cs	*cs = spi->controller_state;
	unsigned		nsecs = cs->nsecs;

	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
}

/*----------------------------------------------------------------------*/

/*
 * SECOND PART ... simple transfer queue runner.
 *
 * This costs a task context per controller, running the queue by
 * performing each transfer in sequence.  Smarter hardware can queue
 * several DMA transfers at once, and process several controller queues
 * in parallel; this driver doesn't match such hardware very well.
 *
 * Drivers can provide word-at-a-time i/o primitives, or provide
 * transfer-at-a-time ones to leverage dma or fifo hardware.
 */
static void bitbang_work(struct work_struct *work)
{
	struct spi_bitbang	*bitbang =
		container_of(work, struct spi_bitbang, work);
	unsigned long		flags;
	int			do_setup = -1;
	int			(*setup_transfer)(struct spi_device *,
					struct spi_transfer *);

	setup_transfer = bitbang->setup_transfer;

	spin_lock_irqsave(&bitbang->lock, flags);
	bitbang->busy = 1;
	while (!list_empty(&bitbang->queue)) {
		struct spi_message	*m;
		struct spi_device	*spi;
		unsigned		nsecs;
		struct spi_transfer	*t = NULL;
		unsigned		tmp;
		unsigned		cs_change;
		int			status;

		m = container_of(bitbang->queue.next, struct spi_message,
				queue);
		list_del_init(&m->queue);
		spin_unlock_irqrestore(&bitbang->lock, flags);

		/* FIXME this is made-up ... the correct value is known to
		 * word-at-a-time bitbang code, and presumably chipselect()
		 * should enforce these requirements too?
		 */
		nsecs = 100;

		spi = m->spi;
		tmp = 0;
		cs_change = 1;
		status = 0;

		list_for_each_entry (t, &m->transfers, transfer_list) {

			/* override speed or wordsize? */
			if (t->speed_hz || t->bits_per_word)
				do_setup = 1;

			/* init (-1) or override (1) transfer params */
			if (do_setup != 0) {
				if (!setup_transfer) {
					status = -ENOPROTOOPT;
					break;
				}
				status = setup_transfer(spi, t);
				if (status < 0)
					break;
			}

			/* set up default clock polarity, and activate chip;
			 * this implicitly updates clock and spi modes as
			 * previously recorded for this device via setup().
			 * (and also deselects any other chip that might be
			 * selected ...)
			 */
			if (cs_change) {
				bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
				ndelay(nsecs);
			}
			cs_change = t->cs_change;
			if (!t->tx_buf && !t->rx_buf && t->len) {
				status = -EINVAL;
				break;
			}

			/* transfer data.  the lower level code handles any
			 * new dma mappings it needs. our caller always gave
			 * us dma-safe buffers.
			 */
			if (t->len) {
				/* REVISIT dma API still needs a designated
				 * DMA_ADDR_INVALID; ~0 might be better.
				 */
				if (!m->is_dma_mapped)
					t->rx_dma = t->tx_dma = 0;
				status = bitbang->txrx_bufs(spi, t);
			}
			if (status > 0)
				m->actual_length += status;
			if (status != t->len) {
				/* always report some kind of error */
				if (status >= 0)
					status = -EREMOTEIO;
				break;
			}
			status = 0;

			/* protocol tweaks before next transfer */
			if (t->delay_usecs)
				udelay(t->delay_usecs);

			if (!cs_change)
				continue;
			if (t->transfer_list.next == &m->transfers)
				break;

			/* sometimes a short mid-message deselect of the chip
			 * may be needed to terminate a mode or command
			 */
			ndelay(nsecs);
			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
			ndelay(nsecs);
		}

		m->status = status;
		m->complete(m->context);

		/* restore speed and wordsize if it was overridden */
		if (do_setup == 1)
			setup_transfer(spi, NULL);
		do_setup = 0;

		/* normally deactivate chipselect ... unless no error and
		 * cs_change has hinted that the next message will probably
		 * be for this chip too.
		 */
		if (!(status == 0 && cs_change)) {
			ndelay(nsecs);
			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
			ndelay(nsecs);
		}

		spin_lock_irqsave(&bitbang->lock, flags);
	}
	bitbang->busy = 0;
	spin_unlock_irqrestore(&bitbang->lock, flags);
}

/**
 * spi_bitbang_transfer - default submit to transfer queue
 */
int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
{
	struct spi_bitbang	*bitbang;
	unsigned long		flags;
	int			status = 0;

	m->actual_length = 0;
	m->status = -EINPROGRESS;

	bitbang = spi_master_get_devdata(spi->master);

	spin_lock_irqsave(&bitbang->lock, flags);
	if (!spi->max_speed_hz)
		status = -ENETDOWN;
	else {
		list_add_tail(&m->queue, &bitbang->queue);
		queue_work(bitbang->workqueue, &bitbang->work);
	}
	spin_unlock_irqrestore(&bitbang->lock, flags);

	return status;
}
EXPORT_SYMBOL_GPL(spi_bitbang_transfer);

/*----------------------------------------------------------------------*/

/**
 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
 * @bitbang: driver handle
 *
 * Caller should have zero-initialized all parts of the structure, and then
 * provided callbacks for chip selection and I/O loops.  If the master has
 * a transfer method, its final step should call spi_bitbang_transfer; or,
 * that's the default if the transfer routine is not initialized.  It should
 * also set up the bus number and number of chipselects.
 *
 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
 * hardware that basically exposes a shift register) or per-spi_transfer
 * (which takes better advantage of hardware like fifos or DMA engines).
 *
 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
 * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
 * routine isn't initialized.
 *
 * This routine registers the spi_master, which will process requests in a
 * dedicated task, keeping IRQs unblocked most of the time.  To stop
 * processing those requests, call spi_bitbang_stop().
 */
int spi_bitbang_start(struct spi_bitbang *bitbang)
{
	int	status;

	if (!bitbang->master || !bitbang->chipselect)
		return -EINVAL;

	INIT_WORK(&bitbang->work, bitbang_work);
	spin_lock_init(&bitbang->lock);
	INIT_LIST_HEAD(&bitbang->queue);

	if (!bitbang->master->mode_bits)
		bitbang->master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;

	if (!bitbang->master->transfer)
		bitbang->master->transfer = spi_bitbang_transfer;
	if (!bitbang->txrx_bufs) {
		bitbang->use_dma = 0;
		bitbang->txrx_bufs = spi_bitbang_bufs;
		if (!bitbang->master->setup) {
			if (!bitbang->setup_transfer)
				bitbang->setup_transfer =
					 spi_bitbang_setup_transfer;
			bitbang->master->setup = spi_bitbang_setup;
			bitbang->master->cleanup = spi_bitbang_cleanup;
		}
	} else if (!bitbang->master->setup)
		return -EINVAL;

	/* this task is the only thing to touch the SPI bits */
	bitbang->busy = 0;
	bitbang->workqueue = create_singlethread_workqueue(
			dev_name(bitbang->master->dev.parent));
	if (bitbang->workqueue == NULL) {
		status = -EBUSY;
		goto err1;
	}

	/* driver may get busy before register() returns, especially
	 * if someone registered boardinfo for devices
	 */
	status = spi_register_master(bitbang->master);
	if (status < 0)
		goto err2;

	return status;

err2:
	destroy_workqueue(bitbang->workqueue);
err1:
	return status;
}
EXPORT_SYMBOL_GPL(spi_bitbang_start);

/**
 * spi_bitbang_stop - stops the task providing spi communication
 */
int spi_bitbang_stop(struct spi_bitbang *bitbang)
{
	spi_unregister_master(bitbang->master);

	WARN_ON(!list_empty(&bitbang->queue));

	destroy_workqueue(bitbang->workqueue);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bitbang_stop);

MODULE_LICENSE("GPL");

相關推薦

spi 主機控制器驅動(spi_master)

spi_master/* linux/drivers/spi/spi_s3c24xx.c * * Copyright (c) 2006 Ben Dooks * Copyright (c) 2006 Simtec Electronics * Ben Dooks <

linux spi主機控制器pl022驅動註冊以及匹配裝置過程

最近看海思的spi比較多,海思3519的spi ip使用的時ARM提供的pl022,這裡對pl022驅動註冊和匹配裝置樹中的裝置這個過程捋一下。 pl022是ARM提供的片內外設,很多廠商都用了這個ip,只在一些細小的區別。所以它的驅動也是非常通用的。pl022的手冊可以看這裡點選開啟連結

ehci及其伴隨ohci主機控制器驅動分析

1. 正常插入 插上U盤產生中斷呼叫usb_hcd_irq: usb_hcd_irq ehci_irq usb_hcd_resume_root_hub queue_work(pm_wq, &hcd->wakeup_work); //hcd.

USB主機控制器驅動——OHCI分析

    本文以 2440-ohci 驅動為例,簡單分析 USB 主機控制器驅動 根 Hub 的註冊過程,以及 USB裝置的列舉過程,並不涉及USB協議,單純分析驅動框架流程。無論是hub還是普通的usb裝置,它們註冊到 usb_bus_type 都會經歷兩次 Match ,

linux系統匯流排SPI匯流排三之SPI控制器驅動程式分析

嵌入式微處理器訪問SPI裝置有兩種方式:使用GPIO模擬SPI介面的工作時序或者使用SPI控制器。使用GPIO模擬SPI介面的工作時序是非常容易實現的,但是會導致大量的時間耗費在模擬SPI介面的時序上,訪問效率比較低,容易成為系統瓶頸。這裡主要分析使用SPI控制器的情況。

linux裝置驅動之USB主機控制器驅動分析 (一)

一:前言 Usb是一個很複雜的系統.在usb2.0規範中,將其定義成了一個分層模型.linux中的程式碼也是按照這個分層模型來設計的.具體的分為 usb裝置,hub和主機控制器三部份.在閱讀程式碼的時候,必須要參考相應的規範.最基本的就是USB2.0的spec.

二、Linux spi 控制器驅動

1、概覽 對於ARM平臺來說,大多數CPU都是SoC。spi控制器被整合在CPU內部。spi總線上的資料傳輸過程通常就是這個spi控制器來控制的。為了使spi控制器能工作在linux spi子系統中,我們就需要針對CPU內部的spi控制器編寫一個驅動。前面

spi控制器驅動模型

#include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/module.h> #include <linux/of.h> #include <

23 H5的spi控制器驅動

在核心裡的配置選項: make menuconfig ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- Device Drivers ---> [*] SPI support --->

SPI驅動之主控制器驅動程式

 嵌入式微處理器訪問SPI裝置有兩種方式:使用GPIO模擬SPI介面的工作時序或者使用SPI控制器。使用GPIO模擬SPI介面的工作時序是非常容易實現的,但是會導致大量的時間耗費在模擬SPI介面的時序上,訪問效率比較低,容易成為系統瓶頸。這裡主要分析使用SPI控制器的情

基於MT7688 原廠SDK 使用SPI控制器驅動TFT螢幕ILI9225驅動器(spi介面)

以下是我的一個利用SPI控制器操作屏的一個操作例項 包含一個bpeer_tft.c 和一個bpeer_tft.h 這是我基於flash驅動剝離出來的spi控制器驅動 好的話,頂起來~~~~~~~~~~~~~~~~~~~ 下面是程式碼: bpeer_tft.c 1 /*

I2C、 SPI、 USB驅動架構類比

1 I2C、 SPI、 USB驅動架構 根據圖12.4, Linux傾向於將主機端的驅動與外設端的驅動分離,而通過一個核心層將某種匯流排的協議進行抽象,外設端的驅動呼叫核心層API間接過渡到對主機驅動傳輸函式的呼叫。對於I2C、 SPI這類不具備熱插拔能力的匯流排而言,一般在arch/ar

WS2812燈珠(二)-- STM32 SPI+DMA方式驅動

    通過硬體SPI的可以很巧妙的模擬出WS2812的通訊時序,用spi的8位資料模擬ws281x的一位資料。 要將系統時鐘設定為56M,SPI分頻數設定為8,則SPI的通訊頻率為7M,1s/7M≈143ns 即傳輸一位資料的時間約為143納秒(ns)  3*14

USB主機控制器 Host Controller --深入理解

分享一下我老師大神的人工智慧教程!零基礎,通俗易懂!http://blog.csdn.net/jiangjunshow 也歡迎大家轉載本篇文章。分享知識,造福人民,實現我們中華民族偉大復興!        

sas控制器驅動結構粗探--基於3.10.0-693.25.4

部門測試環境最近出了個核心core,是宕機在了mpt3sas這個模組,以前沒見過這個模組,怎麼查這個core呢?以前沒見過,現在見見就好了;)。這個模組是sas控制器的驅動,在之前的IO棧研究中,只瞭解到過通用塊層,scsi往下的就沒接觸了,也正好趁此解這個bug的機會了解下IO棧scs

認識BLE 5協議棧 —— 主機控制器介面

轉自 http://www.sunyouqun.com/2017/04/understand-ble-5-stack-hci-layer/ BLE協議棧規定物理層、鏈路層和DTM層屬於控制器,其他協議層屬於主機,主機與控制器之間的通訊是通過主機控制器介面傳輸層完成的。 主機控制

Linux下SPI和IIC驅動免在裝置樹上新增裝置資訊的編寫方法

      編寫i2c或spi驅動時,一般需要往裝置樹上(或者板級檔案)新增節點資訊,這裡提供一種直接在驅動中新增裝置資訊的方法,使驅動更方便移植。 i2c的驅動模板如下 #include <linux/module.h> #include <linux

藍芽BLE---DA14683的SPI主機通訊講解

DA14683的SPI主機通訊例程 Date: 2018.12.19 Create: Jim 匯入例程 首先匯入ble_peripheral例程或者pxp_reporter例程 再到以下位置開啟硬體SPI的巨集定義:   獲取SPI例程原始碼

藍芽BLE---DA14683的SPI主機通訊C原始碼

demo_spi.h #include "hw_gpio.h" #include "hw_uart.h" #include "hw_spi.h" #include "osal.h" #include "resmgmt.h" #define SPITimeOut ((unsigned i

65 linux spi裝置驅動spi LCD屏驅動

SPI的控制器驅動由平臺裝置與平臺驅動來實現. 驅動後用spi_master物件來描述.在裝置驅動中就可以通過函式spi_write, spi_read, spi_w8r16, spi_w8r8等函式來呼叫控制器. "include/linux/spi/s