1. 程式人生 > >A7799之STM32程式——STM32測試高精度ADC篇(二)

A7799之STM32程式——STM32測試高精度ADC篇(二)

1.  AD7799概述

AD7799是ADI公司早期推出一款高精度低速率的ADC,效能引數如下

•均方根(RMS)噪聲: 
27 nV(4.17 Hz、AD7799) 
65 nV(16.7 Hz、AD7799) 
40 nV(4.17 Hz、AD7798) 
85 nV(16.7 Hz、AD7798)

•功耗:380 µA(典型值)

•省電模式:最大1 µA

•低噪聲可程式設計增益儀表放大器

•更新速率:4.17 Hz至470 Hz;3個差分輸入(相比ADS1232多一個通道)

•內部時鐘振盪器

•50 Hz/60 Hz同時抑制

•基準電壓檢測

•低端電源開關

•可程式設計數字輸出

•熔斷電流控制

•電源電壓:2.7 V至5.25 V

•高達23.5個有效位

AD7799價效比很高,非常適用於靜態變數的測試,如電子秤、應變計、氣體分析、儀器儀表、壓力感測器、血液分析、工業過程控制等應用。本人對AD7799做了一次比較測試,分享下測試的結果

2.  硬體設計分析


        從結構圖可以看出來,AD7799是模擬區域與數字區域完全獨立的ADC,即AVDD給模擬區域供電,DVDD給數字區域供電,在原理圖設計方面按照官方指導文件,需要對兩個區域做獨立的佈線與隔離處理,才能讓信噪比最佳。另可靠的基準電壓是高精度ADC命根,本次試驗選擇TI公司推出的REF5025作基準參考,REF5025可低於3µVpp/V 噪聲、3ppm/°C 漂移,效能是十分出色的。


             由於經常做高頻類專案,十分討厭杜邦線/飛線測試方式,在高精度的領域,24位ADC梯度值2的2416777216,如果接入基準電壓是2.5v,理論解析度可達到0.149μV,做過高頻的工程師深知杜邦線的罪惡,根據上面的技術分析,哪怕線路被引入1μV的干擾,也可以讓精度打上一定折扣。為了讓ADS1232效能得以充分體現,特意做了一個測試載板,載板的設計也是很關鍵,分割模擬數字區域同時,連線地方大量使用鉭電容做旁路電路,以把波紋抑制到最小,合理的佈局與佈線也很重要,敷銅區域也需要模數分離,以磁珠或者0-5R/電感隔開。


3.  時序圖解說


       由時序圖看出來,AD7799
讀寫是簡單的3線序列讀數方式,屬於Microwire序列介面,STM32SPI介面可以
完美的與之匹配,當然也可以採用軟仿SPI替代STM32的硬體SPI,這樣的程式更具移植性。SPI時序實現也相對簡單,
AD7799的CS線僅僅只是做片選使用(上圖所示),而不用過多管理,保持低電平即可。特別需要注意的是在空閒時
候,SCLK時鐘訊號需要保持高電平,在SCLK半個週期當DIN接收到0x58後轉換的資料才傳入到DOUT匯流排,這時候
能讀取資料。

4.  核心原始碼

暫存器列表(官方)
#define AD7799_CS_LOW  AD_CS_0()
#define AD7799_CS_HIGH  AD_CS_1()
#define ADC_RDY_DAT (AD_DO)
/*AD7799 Registers*/
#define AD7799_REG_COMM		0 /* Communications Register(WO, 8-bit) */
#define AD7799_REG_STAT	    0 /* Status Register	    (RO, 8-bit) */
#define AD7799_REG_MODE	    1 /* Mode Register	     	(RW, 16-bit */
#define AD7799_REG_CONF	    2 /* Configuration Register (RW, 16-bit)*/
#define AD7799_REG_DATA	    3 /* Data Register	     	(RO, 16-/24-bit) */
#define AD7799_REG_ID	    4 /* ID Register	     	(RO, 8-bit) */
#define AD7799_REG_IO	    5 /* IO Register	     	(RO, 8-bit) */
#define AD7799_REG_OFFSET   6 /* Offset Register	    (RW, 24-bit */
#define AD7799_REG_FULLSALE	7 /* Full-Scale Register	(RW, 24-bit */

/* Communications Register Bit Designations (AD7799_REG_COMM) */
#define AD7799_COMM_WEN		(1 << 7) 			/* Write Enable */
#define AD7799_COMM_WRITE	(0 << 6) 			/* Write Operation */
#define AD7799_COMM_READ    (1 << 6) 			/* Read Operation */
#define AD7799_COMM_ADDR(x)	(((x) & 0x7) << 3)	/* Register Address */
#define AD7799_COMM_CREAD	(1 << 2) 			/* Continuous Read of Data Register */

/* Status Register Bit Designations (AD7799_REG_STAT) */
#define AD7799_STAT_RDY		(1 << 7) /* Ready */
#define AD7799_STAT_ERR		(1 << 6) /* Error (Overrange, Underrange) */
#define AD7799_STAT_CH3		(1 << 2) /* Channel 3 */
#define AD7799_STAT_CH2		(1 << 1) /* Channel 2 */
#define AD7799_STAT_CH1		(1 << 0) /* Channel 1 */

/* Mode Register Bit Designations (AD7799_REG_MODE) */
#define AD7799_MODE_SEL(x)		(((x) & 0x7) << 13)	/* Operation Mode Select */
#define AD7799_MODE_PSW(x)		(1 << 12)			/* Power Switch Control Bit */	
#define AD7799_MODE_RATE(x)		((x) & 0xF) 		/* Filter Update Rate Select */

/* AD7799_MODE_SEL(x) options */
#define AD7799_MODE_CONT		 0 /* Continuous Conversion Mode */
#define AD7799_MODE_SINGLE		 1 /* Single Conversion Mode */
#define AD7799_MODE_IDLE		 2 /* Idle Mode */
#define AD7799_MODE_PWRDN		 3 /* Power-Down Mode */
#define AD7799_MODE_CAL_INT_ZERO 4 /* Internal Zero-Scale Calibration */
#define AD7799_MODE_CAL_INT_FULL 5 /* Internal Full-Scale Calibration */
#define AD7799_MODE_CAL_SYS_ZERO 6 /* System Zero-Scale Calibration */
#define AD7799_MODE_CAL_SYS_FULL 7 /* System Full-Scale Calibration */

/* Configuration Register Bit Designations (AD7799_REG_CONF) */
#define AD7799_CONF_BO_EN	  (1 << 13) 			/* Burnout Current Enable */
#define AD7799_CONF_UNIPOLAR  (1 << 12) 			/* Unipolar/Bipolar Enable */
#define AD7799_CONF_GAIN(x)	  (((x) & 0x7) << 8) 	/* Gain Select */
#define AD7799_CONF_REFDET(x) (((x) & 0x1) << 5) 	/* Reference detect function */
#define AD7799_CONF_BUF		  (1 << 4) 				/* Buffered Mode Enable */
#define AD7799_CONF_CHAN(x)	  ((x) & 0x7) 			/* Channel select */

/* AD7799_CONF_GAIN(x) options */
#define AD7799_GAIN_1       0
#define AD7799_GAIN_2       1
#define AD7799_GAIN_4       2
#define AD7799_GAIN_8       3
#define AD7799_GAIN_16      4
#define AD7799_GAIN_32      5
#define AD7799_GAIN_64      6
#define AD7799_GAIN_128     7

/* AD7799_CONF_REFDET(x) options */
#define AD7799_REFDET_ENA   1	
#define AD7799_REFDET_DIS   0

/* AD7799_CONF_CHAN(x) options */
#define AD7799_CH_AIN1P_AIN1M	0 /* AIN1(+) - AIN1(-) */
#define AD7799_CH_AIN2P_AIN2M	1 /* AIN2(+) - AIN2(-) */
#define AD7799_CH_AIN3P_AIN3M	2 /* AIN3(+) - AIN3(-) */
#define AD7799_CH_AIN1M_AIN1M	3 /* AIN1(-) - AIN1(-) */
#define AD7799_CH_AVDD_MONITOR	7 /* AVDD Monitor */

/* ID Register Bit Designations (AD7799_REG_ID) */
#define AD7799_ID			0x9
#define AD7799_ID_MASK		0xF

/* IO (Excitation Current Sources) Register Bit Designations (AD7799_REG_IO) */
#define AD7799_IOEN			(1 << 6)
#define AD7799_IO1(x)		(((x) & 0x1) << 4)
#define AD7799_IO2(x)		(((x) & 0x1) << 5)
初始化程式
unsigned char AD7799_Init(void)
{ 
	unsigned char status = 0x1;
	u32 ID=AD7799_GetRegisterValue(AD7799_REG_ID, 1);
	if( (ID& 0x0F) != AD7799_ID)
	{
		status = 0x0;
	}
	
	return(status);
}

讀取暫存器值
unsigned long AD7799_GetRegisterValue(unsigned char regAddress, unsigned char size)
{
	unsigned char data[5] = {0x00, 0x00, 0x00, 0x00, 0x00};
	unsigned long receivedData = 0x00;	
	data[0] = AD7799_COMM_READ |  AD7799_COMM_ADDR(regAddress);
	AD7799_CS_LOW;  
	SPI_Write(data,1);
	SPI_Read(data,size);
	AD7799_CS_HIGH;
	if(size == 1)
	{
		receivedData += (data[0] << 0);
	}
	if(size == 2)
	{
		receivedData += (data[0] << 8);
		receivedData += (data[1] << 0);
	}
	if(size == 3)
	{
		receivedData += (data[0] << 16);
		receivedData += (data[1] << 8);
		receivedData += (data[2] << 0);
	}
        return receivedData;
}



寫暫存器
void AD7799_SetRegisterValue(unsigned char regAddress,
                             unsigned long regValue, 
                             unsigned char size)
{
    unsigned char data[5] = {0x03, 0x00, 0x00, 0x00, 0x00};	
	    data[0] = AD7799_COMM_WRITE |  AD7799_COMM_ADDR(regAddress);
    if(size == 1)
    {
        data[1] = (unsigned char)regValue;
    }
    if(size == 2)
    {
		   data[2] = (unsigned char)((regValue & 0x0000FF) >> 0);
        data[1] = (unsigned char)((regValue & 0x00FF00) >> 8);
    }
    if(size == 3)
    {
		  data[3] = (unsigned char)((regValue & 0x0000FF) >> 0);
		  data[2] = (unsigned char)((regValue & 0x00FF00) >> 8);
          data[1] = (unsigned char)((regValue & 0xFF0000) >> 16);
    }
    AD7799_CS_LOW;	    
    SPI_Write(data,(1 + size));
    AD7799_CS_HIGH;
}
復位
void AD7799_Reset(void)
{
	unsigned char dataToSend[5] = {0x03, 0xff, 0xff, 0xff, 0xff};
	AD7799_CS_LOW;	    
	SPI_Write(dataToSend,4);
	AD7799_CS_HIGH;	
}
初始化:
void AD7799_INIT(void)
{
    unsigned long command;
    command = AD7799_GetRegisterValue(AD7799_REG_CONF,2);
    command &= ~AD7799_CONF_GAIN(0xFF);
    command |= AD7799_CONF_GAIN(1); / 不使用內部PGA
    AD7799_SetRegisterValue(AD7799_REG_CONF,command,2);
    AD7799_SetReference();
    command = AD7799_GetRegisterValue(AD7799_REG_CONF,2);
    command &= ~AD7799_CONF_CHAN(0xFF);
    command |= AD7799_CONF_CHAN(2); // 第三通道 AIN3+ —— AIN3-
    AD7799_SetRegisterValue(AD7799_REG_CONF,command,2);
    command = AD7799_GetRegisterValue(AD7799_REG_MODE,2);
    command &= ~AD7799_MODE_SEL(0xFF);
    command |= AD7799_MODE_SEL(0);// 連續轉換模式
    AD7799_SetRegisterValue(AD7799_REG_MODE,command,2);
}

5.  測試結果

測試條件Vref=2.5v(REF5025調理過後輸出)、Gain=1、Updata Reat=4.17Hz

測試源是AVDD電阻分壓後的電壓值,實際加入電壓是:2.217452v(8位半表實測),通過誤差曲線的分析,

擺幅穩定在±4µV,效果還是很理想的,官方測試條件Gain=64,加入片內放大器後噪聲干擾還是不小的(下圖,Y軸

單位LBS),有將近60個LBS的波動,當然主抗匹配也有一定的原因。因此在使用前零度和滿度校準是十分必要的。

6.  總結

作為一款低速高精度的ADC,AD7799是個不錯的選擇,相比於ADS1232雖然價格上是高了,但是他比

ADS1232多了一個差分通道,轉換速率可以到達470Hz,在本次測試看來,就效能上看起來稍比ADS1232好一點,

是相差無幾,同樣,超高的價效比和出色的效能讓它在同級別的ADC中也有很強的競爭能力。歡迎大家多交流技術

Q Q:1625874998,可提供部分資料,供大家設計參考。