1. 程式人生 > >一文秒懂CPU使用率

一文秒懂CPU使用率

目錄

  • CPU:Cores, and Hyper-Threading 
    • 超執行緒(Hyper-Threading )
    • 多核(multi-cores)
  • CPU使用率計算
    • CPU使用率測試
    • 如何計算CPU使用率
    • 實現CPU使用率統計程式

CPU:Cores, and Hyper-Threading 

超執行緒(Hyper-Threading )

超執行緒是Intel最早提出一項技術,最早出現在2002年的Pentium4上。單個採用超執行緒的CPU對於作業系統來說就像有兩個邏輯CPU,為此P4處理器需要多加入一個Logical CPU Pointer(邏輯處理單元)。

雖然採用超執行緒技術能同時執行兩個執行緒,但它並不像兩個真正的CPU那樣,每個CPU都具有獨立的資源。當兩個執行緒都同時需要某一個資源時,其中一個要暫時停止,並讓出資源,直到這些資源閒置後才能繼續。因此超執行緒的效能並不等於兩顆CPU的效能。

多核(multi-cores)

最開始CPU只有一個核(core),為了提高效能,引入了雙核CPU,四核CPU等,雙核CPU能同時執行兩個執行緒。和超執行緒不同的是,雙核CPU是實打實的有兩個central processing units在一個CPU chip。


上圖顯示主機板上有1個插槽(socket),這個插槽插著一個CPU,這個CPU有4個核(core),每個核都使用超執行緒技術,所以這臺機器總共有8個邏輯核。

CPU使用率計算

CPU使用率測試

一臺擁有8個logic core CPU的機器,執行如下程式:

#include <pthread.h>

const int num = 9;
pthread_t threads[num];

void *func(void* arg) {
    while(1) {}
    return ((void *)0);
}

int main(int argc, char* argv[]) {
    for (int i = 0; i < num; i++) {
        pthread_create(&threads[i], NULL, func, NULL);
    }
    for (int i = 0; i < num; i++) {
        pthread_join(threads[i], NULL);
    }
    return 0;
}

該程式開啟9個執行緒每個執行緒都執行一個死迴圈。執行後用top檢視cpu使用情況:

332 root      20   0   84312    612    416 S 800.0  0.0   7:18.41 cputest

可以看到cputest的CPU使用情況為800%,也就是8個logic core都在執行cputest這個程序。
而在一個只有1個logic的CPU上跑的結果如下:

13812 ubuntu    20   0   80284    708    628 S 97.7  0.1   0:10.14 cputest

可以看到,縱使開啟了9個執行緒,每個執行緒都執行死迴圈,CPU使用率只有97.7%。

如何計算CPU使用率

        1. %CPU  --  CPU Usage
           The task's share of the elapsed CPU time since the last screen update, expressed as a percentage of total CPU time.

           In a true SMP environment, if a process is multi-threaded and top is not operating in Threads mode, amounts greater than 100% may be reported.  You  toggle
           Threads mode with the `H' interactive command.

           Also  for  multi-processor environments, if Irix mode is Off, top will operate in Solaris mode where a task's cpu usage will be divided by the total number
           of CPUs.  You toggle Irix/Solaris modes with the `I' interactive command.

以上擷取自man top中對於CPU使用率的定義,總結來說某個程序的CPU使用率就是這個程序在一段時間內佔用的CPU時間佔總的CPU時間的百分比。

比如某個開啟多執行緒的程序1s內佔用了CPU0 0.6s, CPU1 0.9s, 那麼它的佔用率是150%。這樣就不難理解上例中cputest程序CPU佔用率為800%這個結果了。

實現CPU使用率統計程式

某程序cpu使用率 = 該程序cpu時間 / 總cpu時間。

/proc/pid/stat中可以得出程序自啟動以來佔用的cpu時間。以bash程序為例:

79 (bash) S 46 79 79 34816 0 0 0 0 0 0 46 135 387954 4807 20 0 1 0 6114 232049254400 873 18446744073709551615 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

第14項utime和第15項stime分別表示bash自啟動起來,執行使用者程式碼態佔用的時間和執行核心態程式碼佔用的時間,單位是clock tick,clock tick是時間單位。這兩項的詳細解釋如下(摘自man proc):

              (14) utime  %lu
                        Amount  of  time  that  this process has been scheduled in user mode, measured in clock ticks (divide by sysconf(_SC_CLK_TCK)).  This includes
                        guest time, guest_time (time spent running a virtual CPU, see below), so that applications that are not aware of the guest time field  do  not
                        lose that time from their calculations.

              (15) stime  %lu
                        Amount of time that this process has been scheduled in kernel mode, measured in clock ticks (divide by sysconf(_SC_CLK_TCK)).

每個clock tick佔用多少時間呢?
可以通過sysconf(_SC_CLK_TCK)獲取1秒內有多少個clock tick(通常是100)。也就是說1 clock tick為1 / 100秒。

有了上面的基礎,
我們可以每隔period秒讀取/proc/pid/stat,解析其中的utime和stime,將其和(utime+stime)減去上一次取樣時這兩項的和(lastutime + laststime),這就是period秒內該程序佔用CPU的時間,單位為clock tick。
總的CPU時間為period * sysconf(_SC_CLK_TCK),單位也為clock tick。
所以公式如下:
某程序cpu使用率 = ((utime+stime) - (lastutime + laststime)) / (period * sysconf(_SC_CLK_TCK))

以下是實現:

#include <unistd.h>
#include <stdio.h>
#include <sys/time.h>
#include <string.h>
#include <signal.h>
#include <stdlib.h>
#include <fstream>
#include <iostream>
#include <sstream>

using namespace std;

struct StatData
{
  void parse(const string& content)
  {
    size_t rp = content.rfind(')');
    std::istringstream iss(content.data() + rp + 1);

    //            0    1    2    3     4    5       6   7 8 9  11  13   15
    // 3770 (cat) R 3718 3770 3718 34818 3770 4202496 214 0 0 0 0 0 0 0 20
    // 16  18     19      20 21                   22      23      24              25
    //  0 1 0 298215 5750784 81 18446744073709551615 4194304 4242836 140736345340592
    //              26
    // 140736066274232 140575670169216 0 0 0 0 0 0 0 17 0 0 0 0 0 0

    iss >> state;
    iss >> ppid >> pgrp >> session >> tty_nr >> tpgid >> flags;
    iss >> minflt >> cminflt >> majflt >> cmajflt;
    iss >> utime >> stime >> cutime >> cstime;
    iss >> priority >> nice >> num_threads >> itrealvalue >> starttime;
  }
  string name; 
  char state;
  int ppid;
  int pgrp;
  int session;
  int tty_nr;
  int tpgid;
  int flags;

  long minflt;
  long cminflt;
  long majflt;
  long cmajflt;

  long utime;
  long stime;
  long cutime;
  long cstime;

  long priority;
  long nice;
  long num_threads;
  long itrealvalue;
  long starttime;
};

int clockTicks = static_cast<int>(::sysconf(_SC_CLK_TCK));
const int period = 2;
int pid;
int ticks;
StatData lastStatData;

bool processExists(pid_t pid)
{
  char filename[256];
  snprintf(filename, sizeof filename, "/proc/%d/stat", pid);
  return ::access(filename, R_OK) == 0;
}

//read /proc/pid/stat
string readProcFile(int pid) {
    char filename[256];
    snprintf(filename, sizeof filename, "/proc/%d/stat", pid);
    ifstream in;
    in.open(filename);
    stringstream ss;
    ss << in.rdbuf();
    
    string ret = ss.str();
    return ret;
}

double cpuUsage(int userTicks, int sysTicks, double kPeriod, double kClockTicksPerSecond)
{
    return (userTicks + sysTicks) / (kClockTicksPerSecond * kPeriod); //CPU使用率計算
}

void tick(int num) {
    string content = readProcFile(pid);

    StatData statData;
    memset(&statData, 0, sizeof statData);
    statData.parse(content);
    if (ticks > 0) {
        int userTicks = std::max(0, static_cast<int>(statData.utime - lastStatData.utime)); 
        int sysTicks = std::max(0, static_cast<int>(statData.stime - lastStatData.stime));
        printf("pid %d cpu usage:%.1f%%\n", pid, cpuUsage(userTicks, sysTicks, period, clockTicks) * 100);
    }
    ticks++;
    lastStatData = statData;
}

int main(int argc, char* argv[]) {
    if (argc < 2) {
        printf("Usage: %s pid\n", argv[0]);
        return 0;
    }
    pid = atoi(argv[1]);
    if (!processExists(pid)) {
        printf("Process %d doesn't exist.\n", pid);
        return 1;
    }

    if (signal(SIGALRM, tick) == SIG_ERR) {
        exit(0);
    }
    
    struct itimerval tick;
    memset(&tick, 0, sizeof tick);
    tick.it_value.tv_sec = period;
    tick.it_value.tv_usec = 0;
    tick.it_interval.tv_sec = period;
    tick.it_interval.tv_usec = 0;

    setitimer(ITIMER_REAL, &tick, NULL);

    while (1) {
        pause();
    }
    
    return 0;
}

程式碼很簡單,每隔兩秒採一次樣,計算這兩秒內指定程序的CPU使用率。
為了測試,先將前文的cputest執行起來,該程式會佔滿8個logic core。
./cputest &,然後top看下CPU使用率,大約佔用了800%的CPU。

867 root      20   0   84312    616    416 S 800.0  0.0  17:44.60 cputest

接著用我們的自己的寫的程式看下,pid是867,
./cpumon 867

pid 867 cpu usage:786.0%
pid 867 cpu usage:785.5%
pid 867 cpu usage:787.5%
pid 867 cpu usage:759.5%
pid 867 cpu usage:781.5%
pid 867 cpu usage:791.5%
pid 867 cpu usage:743.5%
pid 867 cpu usage:782.0%
pid 867 cpu usage:777.5%
pid 867 cpu usage:785.0%
pid 867 cpu usage:790.5%
pid 867 cpu usage:786.0%
^C

可以看到每隔兩秒都會計算一次,使用率略低於800%,也可以理解,因為現在cpumon也會佔用一定的CPU時間。

參考資料:
CPU Basics: Multiple CPUs, Cores, and Hyper-Threading Expla