程序代數(Process Algebra)

Process Algebra 理論

提出者 理論名稱 縮寫 論文連結 簡介
C. A. R. Hoare/Tony Hoare Communicating Sequencing Process CSP Communicating Sequential Processes 1978年C. A.R.Hoare提出的通訊順序程序 CSP,是面向分散式系統的程式設計語言
Robin Milner Calculus of Communicating Systems CCS -- 1973至1980年間發明了通訊系統演算CCS,是用於描述通訊併發系統的代數理論
J.A. Bergstra, J.W. Klop Algebra of Communicating Processes with Abstraction ACP [ACP]http://dspace.library.uu.nl/handle/1874/12719) Bergstra等人1984年提出的 ACP理論針對反應式、並行式和分散式系統,描述了兩個系統之間的互動行為

CSP基礎知識

  • 原版教材PDF獲取,點我

    注:目前已更新至2015版;
  • 中文版可參考周巢塵院士翻譯的《通訊順序程序》。但是年代比較久遠,是90年代的版本了。

第一章

1、對確定性程序,如何判斷兩個程序等價?

答: 確定性程序,需要判斷兩者alphabet(字母表)和traces(跡)是否相等。即:

①\(\alpha P=\alpha Q\)

②\(traces( P) =traces( Q )\)

2、\(traces(\mu X: A \cdot F(x)) = ?\)

答: \(traces(\mu X: A \cdot F(x)) = \{s|\exists n≥0,x \in A,s \le traces(F(x))^{n}\}\)

3、證明:

(下述兩道證明題均是採用數學歸納法證明)

(1)\(traces(RUN_{A}) = A^{*}.\)

(注:\(A^{*}\) means the set of sequences with elements in A)

(2)\(traces(VMS) = \cup_{n≥0} \{s| s≤< coin,choc >^{n},n≥0\}.\)

第二章

1、Let \(\alpha P = \{a,c\},\quad and \quad P = (a → c → P), \quad \alpha Q = \{b,c\}\quad and \quad Q = (c → b → Q).\)

(1)\(P || Q = ?\)

答:

\[P||Q
\]
\[= (a → c → P)||(c → b → Q) \tag{by definition}
\]
\[= a → ((c → P)||(c → b → Q)) \tag{by L5A}
\]
\[= a → c → (P||(b → Q))
\]

Also

\[P||(b → Q)
\]
\[= (a → (c → P)||(b → Q)
\]
\[|b → (P||Q)) [by L6]
\]
\[= (a → b → ((c → P)||Q) |b → (P||Q)) \tag{ by L5B}
\]
\[= (a → b → c → (P||(b → Q)) |b → a → c → (P||(b → Q))) \tag{by ‡above}
\]
\[= µX • (a → b → c → X|b → a → c → X)
\]

Therefore

\[(P||Q) = (a → c → μX(a → b → c → X|b → a → c → X)) \tag{by ‡above}
\]

(2)Please prove that \(P|| Q \quad sat\quad 0 ≤ tr↓ a-tr↓ b ≤ 2.\)

答:

1.若 \(tr\) 未執行到迴圈階段,則 \(tr ↓ a = 1\) 或 \(0\), \(tr↓ b = 0\) 滿足不等式;

2.若 \(tr\) 執行到迴圈並恰好完成若干次迴圈,則由於每次迴圈 \(a\) 的個數 \(=\quad b\) 的個數,所以\(tr ↓ a − tr ↓ b = 1\)。

3.若 \(tr\) 執行到某次迴圈中,由於本次迴圈前滿足 \(tr ↓ a - tr ↓ b= 1\),

所以:

若執行 \(a → b → c → X\),則 \(tr↓ a − tr ↓ b =2\) 或 \(1\);

若執行 \(b → a → c → X\),則 \(tr ↓ a- tr ↓ b=0\) 或 \(1\);

綜上,\(0 ≤ tr↓ a- tr ↓ b≤ 2\)。

2、If P and Q never stop and if \(\alpha P \cap \alpha Q\) contains at most one element, then\((P || Q)\) never stops.

(1)請直觀解釋此結論的正確性。

答: 因為P和Q的字母表交集最多含有1個元素,所以不會觸發\((c → P)||(d → Q) = STOP \quad if c\ne d\)

(2)當 \(\alpha P \cap \alpha Q\) 含有 2 個或更多元素時,此結論不成立,舉例說明。

如\(\alpha P = \alpha Q = \{a, b\},\)

\(P = a \rightarrow b \rightarrow P;\)

\(Q = b \rightarrow a \rightarrow Q;\)

\(P || Q = STOP.\)

第三章

1、

(1)\(traces(P\sqcap Q) = ?\)

答: \(traces(P\sqcap Q)=traces(P) ∪ traces(Q)\)

(2)\(traces(P \square Q) = ?\)

答: \(traces(P \square Q)= traces(P)∪ traces(Q)\)

(3)\(refusals(P \sqcap Q) = ?\)

答: \(refusals(P\sqcap Q) = refusals(P) ∪ refusals(Q)\)

(4)\(refusals(P\square Q) = ?\)

答: \(refusals(P\square Q)=refusals(P) ∩ refusals(Q)\)

(5)令\(\alpha P = \alpha Q = \alpha P_{1} = \alpha Q_{1}= \{a,b,c\},\)

\(P_{1} = (a → b → STOP)\)

\(P_{2}= (b → c → STOP)\)

\(P = P_{1} \sqcap P_{2}\)

\(Q = P_{1}\square P_{2}\)

問:

①\(refusals(P) = ?\)

②\(refusals(Q) = ?\)

答:

\(refusals(P_{1}) = \{\{\},{b},{c},{b,c}\}\)

\(refusals(P_{2}) =\{\{\},{a},{c},{a,c}\}\)

\(refusals(P) = \{\{\},{a},{b},{c},{b,c},{a,c}\}\)

\(refusals(Q) =\{\{\},{c}\}\)

(6)\(refusals(P|| Q) = ?\)

答: \(refusals(P||Q)=\{X ∪ Y | X \in refusals(P) \wedge Y \in refusals(Q)\}\)

(7)\(refusals(P|||Q) = ?\)

答:\(refusals(P|||Q) =refusals(P\square Q) =refusals(P) \cap refusals(Q)\)

2.

(1)\(divergences(Chaos) = ?\)

答: \(divergences(Chaos) = A^*\)

(2)\(divergences(X: B → P(X)) = ?\)

答: \(\{⟨x⟩\smallfrown s | x \in B \wedge s \in divergences(P(x))\}\)

(3)\(divergences(P \sqcap Q) = ?\)

答: \(divergences(P) ∪ divergences(Q)\)

(4)\(divergences(P\square Q) = ?\)

答: \(divergences(P) ∪ divergences(Q)\)

(5)\(divergences(P∥Q) = ?\)

答: \(\{s \smallfrown t|t \in (\alpha P ∪ \alpha Q) ^{*} \wedge
((s \upharpoonright\alpha P \in divergences( P )\wedge s \upharpoonright \alpha Q \in traces(Q)) ∨
(s \upharpoonright \alpha P \in traces(P) \wedge s\upharpoonright \alpha Q \in divergences(Q))\}\)

(6)\(divergences(P|||Q) = ?\)

答: \(\{u | \exists s, t • u \quad interleaves (s, t) \wedge ((s \in divergences(P) \wedge t \in traces(Q)) ∨ (s \in traces(P) \wedge t \in divergences(Q)))\}\)

3.

(1)\(failures(P) = ?\)

答: \(failures(P) =\{(s, X)| s \in traces(P) \wedge X \in refusals(P/s)\}\)

(2)P 與 Q 的定義如上述第三章的 1、(3)所定義:

問:\(failures(P) = ?\) \(failures(Q) = ?\)

(3)

①\(failures(P \sqcap Q) = ?\)

答: \(failures(P \sqcap Q) =failures(P)\cup failures(Q)\)

②\(failures(X: B → P(X)) = ?\)

答: \(\{(<>, X)| X \subseteq (\alpha P − B)\} ∪ \{(⟨x⟩ \smallfrown s, X)| x \in B \wedge (s, X) \in failures(P(x))\}\)

③\(failures(P ∥ Q) = ?\)

答: \(failures(P||Q) = \{(s, X \cup Y )|s \in (\alpha P ∪ \alpha Q) ^{*} \wedge (s \upharpoonright \alpha P, X) \in failures(P) \wedge (s\upharpoonright \alpha Q, Y ) \in failures(Q)\} \cup \{(s, X)|s \in divergences(P||Q)\}\)

④\(failures(P \square Q) = ?\)

答: \(\{(s, X)|(s, X) \in failures(P) ∩ failures(Q)) \vee (s \ne <>\wedge (s, X) \in failures(P) \cup failures(Q))\} \cup \{(s, X)| s \in divergences(P \square Q)\}\)

⑤\(failures(P|||Q) = ?\)

答: \(\{(s, X)| ∃t, u• (t, X) \in failures(P) \wedge (u, X) \in failures(Q) \} ∪ \{(s, X)| s \in divergences(P|||Q)\}\)

4.對非確定性程序,如何判斷兩個程序等價?

答:對非確定性程序而言,使用traces已經無法區分(如,第三章的 1、(3)所定義的兩程序\(P\)和\(Q\):\(\alpha P=\alpha Q\),且\(traces(P)=traces(Q )\));進一步引入\(refusals\),但是用\(refusals\)來判斷,具有侷限性。最終,通過\(alphabet\)、\(divergences\)和\(failures\)綜合判斷。

即:

①\(\alpha P=\alpha Q\)

②\(divergences(P)=divergences(Q)\)

③\(failures(P)=failures(Q)\)

CSP: Operational Semantics

1、如何從 CSP 通訊的操作語義角度理解 CSP 併發定義中要求公共事件須同步?

答:

A和B之間存在通訊的管道,可以傳送某種型別的訊息,B在接收到A的訊息之前,並不清楚A傳送的內容,只知道型別;

只有在A傳送的同時,B同步接收,雙方才可以通訊,因此公共事件須同步。

2、從 CSP 的操作語義的角度定義:

(1)\(failures(P) = ?\)

答: \(failures(P) ={}_{df}\{s,X|\exists P_{1},P_{2}\cdot P\stackrel{s}{ \implies}P1\wedge P_{1}\xrightarrow {*}P_2\wedge stable(P_2)\wedge \forall c\in X\cdot \lnot (P_2\rightarrow)\}\)

(2)\(divergences(P) = ?\)

答: \(divergences(P) = {}_{df}\{s|\exists P_{1}\cdot P\stackrel{s}{ \implies}{s} P_{1}\wedge \uparrow P_{1}\}\)

CCS: Bisimulation

1.CCS 中 Strong Bisimulation 是如何定義的?

A binary relation \(S \subseteq P × P\) over agents is a strong bisimulation if \((P, Q) \in S\) implies, for all \(\alpha \in Act\),

(1) Whenever \(P \xrightarrow {\alpha }P'\) then, for some \(Q'\) , \(Q\xrightarrow {\alpha}Q'\) and \((P' ,Q' ) \in S\)

(2) Whenever \(Q \xrightarrow {\alpha } Q'\) then, for some \(P'\) , \(P \xrightarrow {\alpha }P'\) and \((P', Q') \in S\)

Denoted by \(P \sim Q\).

2.CCS 中 Weak Bisimulation 是如何定義的?

A binary relation \(S \subseteq P × P\) over agents is a weak bisimulation if \((P, Q) \in S\) implies, for all \(\alpha \in Act\),

(1) Whenever \(P \xrightarrow {\alpha } P'\) then, for some \(Q'\) , \(Q \stackrel{ \hat\alpha }{ \implies}Q'\) and \((P' ,Q' ) \in S\)

(2) Whenever \(Q \xrightarrow {\alpha } Q'\) then, for some \(P'\) , \(P \stackrel{ \hat\alpha }{ \implies} P'\) and \((P', Q') \in S\)

Denoted by \(P \approx Q\).