簡介

Pandas中有一種特殊的資料型別叫做category。它表示的是一個類別,一般用在統計分類中,比如性別,血型,分類,級別等等。有點像java中的enum。

今天給大家詳細講解一下category的用法。

建立category

使用Series建立

在建立Series的同時新增dtype="category"就可以建立好category了。category分為兩部分,一部分是order,一部分是字面量:

In [1]: s = pd.Series(["a", "b", "c", "a"], dtype="category")

In [2]: s
Out[2]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): ['a', 'b', 'c']

可以將DF中的Series轉換為category:

In [3]: df = pd.DataFrame({"A": ["a", "b", "c", "a"]})

In [4]: df["B"] = df["A"].astype("category")

In [5]: df["B"]
Out[32]:
0 a
1 b
2 c
3 a
Name: B, dtype: category
Categories (3, object): [a, b, c]

可以建立好一個pandas.Categorical ,將其作為引數傳遞給Series:

In [10]: raw_cat = pd.Categorical(
....: ["a", "b", "c", "a"], categories=["b", "c", "d"], ordered=False
....: )
....: In [11]: s = pd.Series(raw_cat) In [12]: s
Out[12]:
0 NaN
1 b
2 c
3 NaN
dtype: category
Categories (3, object): ['b', 'c', 'd']

使用DF建立

建立DataFrame的時候,也可以傳入 dtype="category":

In [17]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")}, dtype="category")

In [18]: df.dtypes
Out[18]:
A category
B category
dtype: object

DF中的A和B都是一個category:

In [19]: df["A"]
Out[19]:
0 a
1 b
2 c
3 a
Name: A, dtype: category
Categories (3, object): ['a', 'b', 'c'] In [20]: df["B"]
Out[20]:
0 b
1 c
2 c
3 d
Name: B, dtype: category
Categories (3, object): ['b', 'c', 'd']

或者使用df.astype("category")將DF中所有的Series轉換為category:

In [21]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")})

In [22]: df_cat = df.astype("category")

In [23]: df_cat.dtypes
Out[23]:
A category
B category
dtype: object

建立控制

預設情況下傳入dtype='category' 創建出來的category使用的是預設值:

  1. Categories是從資料中推斷出來的。
  2. Categories是沒有大小順序的。

可以顯示建立CategoricalDtype來修改上面的兩個預設值:

In [26]: from pandas.api.types import CategoricalDtype

In [27]: s = pd.Series(["a", "b", "c", "a"])

In [28]: cat_type = CategoricalDtype(categories=["b", "c", "d"], ordered=True)

In [29]: s_cat = s.astype(cat_type)

In [30]: s_cat
Out[30]:
0 NaN
1 b
2 c
3 NaN
dtype: category
Categories (3, object): ['b' < 'c' < 'd']

同樣的CategoricalDtype還可以用在DF中:

In [31]: from pandas.api.types import CategoricalDtype

In [32]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")})

In [33]: cat_type = CategoricalDtype(categories=list("abcd"), ordered=True)

In [34]: df_cat = df.astype(cat_type)

In [35]: df_cat["A"]
Out[35]:
0 a
1 b
2 c
3 a
Name: A, dtype: category
Categories (4, object): ['a' < 'b' < 'c' < 'd'] In [36]: df_cat["B"]
Out[36]:
0 b
1 c
2 c
3 d
Name: B, dtype: category
Categories (4, object): ['a' < 'b' < 'c' < 'd']

轉換為原始型別

使用Series.astype(original_dtype) 或者 np.asarray(categorical)可以將Category轉換為原始型別:

In [39]: s = pd.Series(["a", "b", "c", "a"])

In [40]: s
Out[40]:
0 a
1 b
2 c
3 a
dtype: object In [41]: s2 = s.astype("category") In [42]: s2
Out[42]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): ['a', 'b', 'c'] In [43]: s2.astype(str)
Out[43]:
0 a
1 b
2 c
3 a
dtype: object In [44]: np.asarray(s2)
Out[44]: array(['a', 'b', 'c', 'a'], dtype=object)

categories的操作

獲取category的屬性

Categorical資料有 categoriesordered 兩個屬性。可以通過s.cat.categoriess.cat.ordered來獲取:

In [57]: s = pd.Series(["a", "b", "c", "a"], dtype="category")

In [58]: s.cat.categories
Out[58]: Index(['a', 'b', 'c'], dtype='object') In [59]: s.cat.ordered
Out[59]: False

重排category的順序:

In [60]: s = pd.Series(pd.Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"]))

In [61]: s.cat.categories
Out[61]: Index(['c', 'b', 'a'], dtype='object') In [62]: s.cat.ordered
Out[62]: False

重新命名categories

通過給s.cat.categories賦值可以重新命名categories:

In [67]: s = pd.Series(["a", "b", "c", "a"], dtype="category")

In [68]: s
Out[68]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): ['a', 'b', 'c'] In [69]: s.cat.categories = ["Group %s" % g for g in s.cat.categories] In [70]: s
Out[70]:
0 Group a
1 Group b
2 Group c
3 Group a
dtype: category
Categories (3, object): ['Group a', 'Group b', 'Group c']

使用rename_categories可以達到同樣的效果:

In [71]: s = s.cat.rename_categories([1, 2, 3])

In [72]: s
Out[72]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [1, 2, 3]

或者使用字典物件:

# You can also pass a dict-like object to map the renaming
In [73]: s = s.cat.rename_categories({1: "x", 2: "y", 3: "z"}) In [74]: s
Out[74]:
0 x
1 y
2 z
3 x
dtype: category
Categories (3, object): ['x', 'y', 'z']

使用add_categories新增category

可以使用add_categories來新增category:

In [77]: s = s.cat.add_categories([4])

In [78]: s.cat.categories
Out[78]: Index(['x', 'y', 'z', 4], dtype='object') In [79]: s
Out[79]:
0 x
1 y
2 z
3 x
dtype: category
Categories (4, object): ['x', 'y', 'z', 4]

使用remove_categories刪除category

In [80]: s = s.cat.remove_categories([4])

In [81]: s
Out[81]:
0 x
1 y
2 z
3 x
dtype: category
Categories (3, object): ['x', 'y', 'z']

刪除未使用的cagtegory

In [82]: s = pd.Series(pd.Categorical(["a", "b", "a"], categories=["a", "b", "c", "d"]))

In [83]: s
Out[83]:
0 a
1 b
2 a
dtype: category
Categories (4, object): ['a', 'b', 'c', 'd'] In [84]: s.cat.remove_unused_categories()
Out[84]:
0 a
1 b
2 a
dtype: category
Categories (2, object): ['a', 'b']

重置cagtegory

使用set_categories()可以同時進行新增和刪除category操作:

In [85]: s = pd.Series(["one", "two", "four", "-"], dtype="category")

In [86]: s
Out[86]:
0 one
1 two
2 four
3 -
dtype: category
Categories (4, object): ['-', 'four', 'one', 'two'] In [87]: s = s.cat.set_categories(["one", "two", "three", "four"]) In [88]: s
Out[88]:
0 one
1 two
2 four
3 NaN
dtype: category
Categories (4, object): ['one', 'two', 'three', 'four']

category排序

如果category建立的時候帶有 ordered=True , 那麼可以對其進行排序操作:

In [91]: s = pd.Series(["a", "b", "c", "a"]).astype(CategoricalDtype(ordered=True))

In [92]: s.sort_values(inplace=True)

In [93]: s
Out[93]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): ['a' < 'b' < 'c'] In [94]: s.min(), s.max()
Out[94]: ('a', 'c')

可以使用 as_ordered() 或者 as_unordered() 來強制排序或者不排序:

In [95]: s.cat.as_ordered()
Out[95]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): ['a' < 'b' < 'c'] In [96]: s.cat.as_unordered()
Out[96]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): ['a', 'b', 'c']

重排序

使用Categorical.reorder_categories() 可以對現有的category進行重排序:

In [103]: s = pd.Series([1, 2, 3, 1], dtype="category")

In [104]: s = s.cat.reorder_categories([2, 3, 1], ordered=True)

In [105]: s
Out[105]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]

多列排序

sort_values 支援多列進行排序:

In [109]: dfs = pd.DataFrame(
.....: {
.....: "A": pd.Categorical(
.....: list("bbeebbaa"),
.....: categories=["e", "a", "b"],
.....: ordered=True,
.....: ),
.....: "B": [1, 2, 1, 2, 2, 1, 2, 1],
.....: }
.....: )
.....: In [110]: dfs.sort_values(by=["A", "B"])
Out[110]:
A B
2 e 1
3 e 2
7 a 1
6 a 2
0 b 1
5 b 1
1 b 2
4 b 2

比較操作

如果建立的時候設定了ordered==True ,那麼category之間就可以進行比較操作。支援 ==, !=, >, >=, <, 和 <=這些操作符。

In [113]: cat = pd.Series([1, 2, 3]).astype(CategoricalDtype([3, 2, 1], ordered=True))

In [114]: cat_base = pd.Series([2, 2, 2]).astype(CategoricalDtype([3, 2, 1], ordered=True))

In [115]: cat_base2 = pd.Series([2, 2, 2]).astype(CategoricalDtype(ordered=True))
In [119]: cat > cat_base
Out[119]:
0 True
1 False
2 False
dtype: bool In [120]: cat > 2
Out[120]:
0 True
1 False
2 False
dtype: bool

其他操作

Cagetory本質上來說還是一個Series,所以Series的操作category基本上都可以使用,比如: Series.min(), Series.max() 和 Series.mode()。

value_counts:

In [131]: s = pd.Series(pd.Categorical(["a", "b", "c", "c"], categories=["c", "a", "b", "d"]))

In [132]: s.value_counts()
Out[132]:
c 2
a 1
b 1
d 0
dtype: int64

DataFrame.sum():

In [133]: columns = pd.Categorical(
.....: ["One", "One", "Two"], categories=["One", "Two", "Three"], ordered=True
.....: )
.....: In [134]: df = pd.DataFrame(
.....: data=[[1, 2, 3], [4, 5, 6]],
.....: columns=pd.MultiIndex.from_arrays([["A", "B", "B"], columns]),
.....: )
.....: In [135]: df.sum(axis=1, level=1)
Out[135]:
One Two Three
0 3 3 0
1 9 6 0

Groupby:

In [136]: cats = pd.Categorical(
.....: ["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"]
.....: )
.....: In [137]: df = pd.DataFrame({"cats": cats, "values": [1, 2, 2, 2, 3, 4, 5]}) In [138]: df.groupby("cats").mean()
Out[138]:
values
cats
a 1.0
b 2.0
c 4.0
d NaN In [139]: cats2 = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"]) In [140]: df2 = pd.DataFrame(
.....: {
.....: "cats": cats2,
.....: "B": ["c", "d", "c", "d"],
.....: "values": [1, 2, 3, 4],
.....: }
.....: )
.....: In [141]: df2.groupby(["cats", "B"]).mean()
Out[141]:
values
cats B
a c 1.0
d 2.0
b c 3.0
d 4.0
c c NaN
d NaN

Pivot tables:

In [142]: raw_cat = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"])

In [143]: df = pd.DataFrame({"A": raw_cat, "B": ["c", "d", "c", "d"], "values": [1, 2, 3, 4]})

In [144]: pd.pivot_table(df, values="values", index=["A", "B"])
Out[144]:
values
A B
a c 1
d 2
b c 3
d 4

本文已收錄於 http://www.flydean.com/08-python-pandas-category/

最通俗的解讀,最深刻的乾貨,最簡潔的教程,眾多你不知道的小技巧等你來發現!

歡迎關注我的公眾號:「程式那些事」,懂技術,更懂你!