145. 二叉樹的後序遍歷

知識點:二叉樹;遞迴;Morris遍歷

題目描述

給定一個二叉樹的根節點 root ,返回它的 後序 遍歷。

示例

輸入: [1,null,2,3]
1
\
2
/
3 輸出: [3,2,1]

解法一:遞迴

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
List<Integer> list = new ArrayList<>();
public List<Integer> postorderTraversal(TreeNode root) {
if(root == null) return list;
postorderTraversal(root.left);
postorderTraversal(root.right);
list.add(root.val);
return list;
}
}

時間複雜度:0(N),每個節點恰好被遍歷一次;

空間複雜度:O(N),遞迴過程中棧的開銷;

解法二:迭代法

後序遍歷可以用前序遍歷來解決,想一下前序遍歷:根左右,我們先壓右樹再壓左樹。怎麼實現根右左呢,可以先壓左樹再壓右樹嘛,然後反過來不就是左右根了嗎?(反過來用棧來實現,棧一個很大的作用就是實現逆序)

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
List<Integer> list = new ArrayList<>();
public List<Integer> postorderTraversal(TreeNode root) {
Stack<TreeNode> stackA = new Stack<>();
Stack<TreeNode> stackB = new Stack<>();
if(root == null) return list;
stackA.push(root);
while(!stackA.isEmpty()){
TreeNode top = stackA.pop();
stackB.push(top);
if(top.left != null) stackA.push(top.left);
if(top.right != null) stackA.push(top.right);
}
while(!stackB.isEmpty()){
list.add(stackB.pop().val);
}
return list;
}
}

解法三:Morris遍歷

構建從下到上的連線,一條路能夠走遍所有節點;

當我們返回上層之後,也就是將連線斷開的時候,列印下層的單鏈表。

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
List<Integer> list = new ArrayList<>();
public List<Integer> postorderTraversal(TreeNode root) {
if(root == null) return list;
TreeNode cur = root;
TreeNode mostRightNode = null;
while(cur != null){
mostRightNode = cur.left;
if(mostRightNode != null){
while(mostRightNode.right != null && mostRightNode.right != cur){
mostRightNode = mostRightNode.right;
}
if(mostRightNode.right == null){
mostRightNode.right = cur;
cur = cur.left;
continue;
}else{
mostRightNode.right = null;
postMorrisPrint(cur.left); //第二次到達時列印下一層的單鏈表;
cur = cur.right;
}
}else{
cur = cur.right;
}
}
postMorrisPrint(root);
return list;
}
private void postMorrisPrint(TreeNode node){
TreeNode reverseList = reverseList(node); //反轉單鏈表;
TreeNode cur = reverseList;
while(cur != null){
list.add(cur.val);
cur = cur.right;
}
reverseList(reverseList);
}
private TreeNode reverseList(TreeNode node){
TreeNode pre = null;
TreeNode cur = node;
while(cur != null){
TreeNode next = cur.right;
cur.right = pre;
pre = cur;
cur = next;
}
return pre;
}
}

體會

後序遍歷的特殊在於其Morris遍歷;

相關連結

二叉樹