Lambda--Collectors、optional高階使用

偶然看到了同事groupingBy用法,然後百度衍生出了optional,collectors,map等各種用法。突然發現自己之前寫的程式碼又爛又複雜了,後面用optional可以防止空指標,collectors也可以極大簡化程式碼量。






@

1.Optional

optional裡面有防止空指標的語句,但我覺得有些時候報空指標錯更方便定位到問題。比如從庫裡查找出資料,沒找到但是你初始化了一個預設值做了後續處理並返回給前端展示了,這其實就算是BUG了,當然有些時候避免空指標報錯也是非常不錯的選擇。

1.1.Optional--基本方法
//of會報空指標,ofNullable不會(可以防止空指標),而是重新new個optional
Optional.of()
Optional.ofNullable //user不為空即輸出
Optional.ofNullable(user).ifPresent(System.out::println); //user為空則重新new一個
Optional.ofNullable(user).orElse(User.builder().build()); //user為空則報空指標錯誤(雖然ofNullable裡面new了optional,但user依然會為空)
Optional.ofNullable(user).orElseThrow(() -> new NullPointerException()); //user為空則重新new一個
Optional.ofNullable(user).orElseGet(() -> User.builder().build()); //初始化list陣列
List<String> list = null;
List<String> newList = Optional.ofNullable(list).orElse(Lists.newArrayList());
1.2.Optional--filter、map

Optional中可以像stream流一樣操作資料

/**
* @program: springboot
* @description:
* @author: huyuqiao
* @create: 2021/08/07 10:57
*/
@Data
@Builder(toBuilder = true)
public class UserInfo {
private String name;
private String email;
private Integer price;
} @Test
public void optionalTest(){
// Optional--操作物件:filter
UserInfo userInfo = UserInfo.builder()
.name("huyuqiao")
.email("[email protected]")
.price(100)
.build();
UserInfo newUserInfo = Optional.ofNullable(userInfo).filter(u -> u.getPrice() < 1000).orElse(UserInfo.builder().build());
System.out.println(newUserInfo); // Optional--操作物件:map
String name = Optional.ofNullable(userInfo).map(UserInfo::getName).orElse("自定義姓名");
System.out.println(name); // Optional--操作物件:flatmap
Optional.ofNullable(userInfo).flatMap(u -> Optional.ofNullable(u.getName()));
}
1.2.Optional--flatMap

​ flatMap:扁平化獲取層級下的元素並組裝成同一層級。

​ 比如現有陣列[[1],[2],[3]],要提取裡面所有元素並組裝成[1,2,3],可利用flatMap獲取

    @Test
public void flatMapTest(){
List<List<Integer>> outer = new ArrayList<>();
List<Integer> inner1 = new ArrayList<>();
inner1.add(1);
inner1.add(9);
List<Integer> inner2 = new ArrayList<>();
inner2.add(2);
List<Integer> inner3 = new ArrayList<>();
inner3.add(3);
List<Integer> inner4 = new ArrayList<>();
inner4.add(4);
List<Integer> inner5 = new ArrayList<>();
inner5.add(5);
outer.add(inner1);
outer.add(inner2);
outer.add(inner3);
outer.add(inner4);
outer.add(inner5);
List<Integer> result = outer.stream().flatMap(inner -> inner.stream().map(i -> i + 1)).collect(Collectors.toList());
System.out.println(result);
}
//[2, 10, 3, 4, 5, 6]

2.Collectors

會使用了optional基本語句後,後面就可以開始使用Collectors語句了,個人感覺對開發非常實用,可以極大簡化程式碼開發量。先給出基本類,然後就可以使用了

/**
* @program: springboot
* @description:
* @author: huyuqiao
* @create: 2021/08/06 10:10
*/ import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor; /**
* 學生資訊
*/
@Data
@AllArgsConstructor
@NoArgsConstructor
public class Student {
/** 姓名 */
private String name;
/** 總分 */
private int totalScore;
/** 是否本地人 */
private boolean local;
/** 年級 */
private GradeType gradeType; /**
* 年級型別
*/
public enum GradeType {ONE,TWO,THREE}
}
2.1.averagingDouble--計算平均值

注意: double格式可以表示-253到253範圍內的所有連續整數。如果管道有超過253的值,則平均計算中的除數將在253處飽和,從而導致額外的數值誤差。(所以計算數多時需要專用BigDecimal進行計算)

 	//統計所有學生的平均總成績
@Test
public void averagingDoubleTest(){
Double avgScore = menu.stream().collect(Collectors.averagingDouble(Student::getTotalScore));
Optional.ofNullable(avgScore).ifPresent(System.out::println);
}
2.2.collectingAndThen--轉換型別

collectingAndThen方法:調整Collector收集器以執行其它的結束轉換

       @Test
public void collectingAndThenTest(){
// unmodifiablelist:不能add,set。arrays.aslist可以set,但是不能add
List<Student> studentList = menu.stream().collect(Collectors.collectingAndThen(Collectors.toList(), Collections::unmodifiableList));
System.out.println(studentList); //collectingandthen:計算總平均值並轉換成自定義字串返回
Optional.ofNullable(menu.stream().collect(
Collectors.collectingAndThen(Collectors.averagingInt(Student::getTotalScore), a -> "the average totalscore is" + a)
)).ifPresent(System.out::println); }
2.3.counting--類似count()

counting方法:統計collectors收集器元素

    @Test
public void countingTest(){
Optional.of(menu.stream().collect(Collectors.counting())).ifPresent(System.out::println);
}
// 7
2.4.groupingBy*、groupingByConcurrent--分組(重點)

groupingBy方法:分組並返回到map中(個人感覺非常好用,對商品進行分組返回給前端,大大簡化了程式碼量)。

groupingByConcurrent:併發分組,無法保證返回資料型別的順序或執行緒安全性

    //按物件某一屬性進行分組
@Test
public void groupByTest(){
Map<Student.GradeType, List<Student>> collect = menu.stream().collect(Collectors.groupingBy(Student::getGradeType));
Optional.ofNullable(collect).ifPresent(System.out::println);
//{THREE=[Student(name=劉一, totalScore=721, local=true, gradeType=THREE), Student(name=陳二, totalScore=637, local=true, gradeType=THREE), Student(name=張三, totalScore=666, local=true, gradeType=THREE), Student(name=王五, totalScore=483, local=false, gradeType=THREE), Student(name=趙六, totalScore=367, local=true, gradeType=THREE)], TWO=[Student(name=李四, totalScore=531, local=true, gradeType=TWO)], ONE=[Student(name=孫七, totalScore=499, local=false, gradeType=ONE)]} //分組後統計每組的平均分數值,並對每組key升序排列
Map<Student.GradeType, Double> map = menu.stream().collect(Collectors.groupingBy(Student::getGradeType, TreeMap::new , Collectors.averagingInt(Student::getTotalScore)));
Optional.ofNullable(map).ifPresent(System.out::println);
//{ONE=499.0, TWO=531.0, THREE=574.8}
}

GroupingBy其他功能:按單個屬性、多個屬性,條件分組、多級分組、分組後組裝成其他集合

package com.empirefree.springboot;

import com.alibaba.fastjson.JSON;
import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner; import java.math.BigDecimal;
import java.util.*;
import java.util.stream.Collectors; /**
* @program: springboot
* @description:
* @author: huyuqiao
* @create: 2021/08/05 09:47
*/
@RunWith(SpringRunner.class)
@SpringBootTest
@Slf4j
public class CollectorsTest {
@Data
public class Product {
private final Long id;
private final Integer num;
private final BigDecimal price;
private final String name;
private final String category;
} @Test
public void testanything(){
// 參考文章:https://blog.csdn.net/u014231523/article/details/102535902
Product prod1 = new Product(1L, 1, new BigDecimal("15.5"), "麵包", "零食");
Product prod1_1 = new Product(11L, 11, new BigDecimal("15.5"), "麵包", "零食");
Product prod2 = new Product(2L, 2, new BigDecimal("20"), "餅乾", "零食");
Product prod3 = new Product(3L, 3, new BigDecimal("30"), "月餅", "零食");
Product prod4 = new Product(4L, 3, new BigDecimal("10"), "青島啤酒", "啤酒");
Product prod5 = new Product(5L, 10, new BigDecimal("15"), "百威啤酒", "啤酒"); List<Product> prodList = Arrays.asList(prod1, prod1_1, prod2, prod3, prod4, prod5);
Object object7 = prodList.stream().collect(Collectors.collectingAndThen(Collectors.maxBy(Comparator.comparingInt(Product::getNum)), Optional::get));
System.out.println(object7); // 1、按某個屬性分組
Map<String, List<Product>> productMap = prodList.stream().collect(Collectors.groupingBy(Product::getCategory));
System.out.println(JSON.toJSONString(productMap)); // 2、按多個屬性分組
Map<String, List<Product>> productMap2 = prodList.stream().collect(Collectors.groupingBy(item -> item.getCategory() + "_" + item.getName()));
System.out.println(JSON.toJSONString(productMap2)); // 3、按條件分組
Map<String, List<Product>> productMap3 = prodList.stream().collect(Collectors.groupingBy(item ->{
if (item.getNum() < 3){
return "3";
} else {
return "other";
}
}));
System.out.println(JSON.toJSONString(productMap3)); // 4、多級分組
Map<String, Map<String, List<Product>>> productMap4 = prodList.stream().collect(Collectors.groupingBy(Product::getCategory, Collectors.groupingBy(item ->{
if (item.getNum() < 3){
return "3";
} else {
return "other";
}
})));
System.out.println(JSON.toJSONString(productMap4)); // 5、分組求總數、求和
Map<String, Long> productMap5 = prodList.stream().collect(Collectors.groupingBy(Product::getCategory, Collectors.counting()));
Map<String, Integer> productMap6 = prodList.stream().collect(Collectors.groupingBy(Product::getCategory, Collectors.summingInt(Product::getNum)));
System.out.println(JSON.toJSONString(productMap5));
System.out.println(JSON.toJSONString(productMap6)); // 6、分組後只獲取最大值
Map<String, Product> prodMap7 = prodList.stream().collect(Collectors.groupingBy(Product::getCategory, Collectors.collectingAndThen(Collectors.maxBy(Comparator.comparingInt(Product::getNum)), Optional::get)));
System.out.println(prodMap7); // 7、分組後組裝成其他集合
Map<String, Set<String>> productMap8 = prodList.stream().collect(Collectors.groupingBy(Product::getCategory, Collectors.mapping(Product::getName, Collectors.toSet())));
System.out.println(JSON.toJSONString(productMap8));
}
}
2.5.partitioningBy--分割槽

partitioningBy方法:分割槽計算。返回map的可序列化和執行緒安全性無法保證

partitioningBy:返回map的key是Boolean。無法保證執行緒安全性

groupingBy:返回map的key是分組的值。可以保證執行緒安全性

    @Test
public void partitioningByTest(){
Map<Boolean, Double> collect = menu.stream().collect(Collectors.partitioningBy(Student::isLocal, Collectors.averagingInt(Student::getTotalScore)));
Optional.ofNullable(collect).ifPresent(System.out::println);
}
2.6.joining--拼接元素

joining方法:連線colletors的每個元素

    @Test
public void joiningTest(){
Optional.ofNullable(menu.stream().map(Student::getName).collect(Collectors.joining(",", "[", "]"))).ifPresent(System.out::println);
//[劉一,陳二,張三,李四,王五,趙六,孫七]
}
2.7.mapping--類似map

mapping方法:類似於map()。

    @Test
public void mappingTest(){
Optional.ofNullable(menu.stream().collect(Collectors.mapping(Student::getName, Collectors.joining(",", "[", "]")))).ifPresent(System.out::println);
}
2.8.maxBy、minBy--型別max(),min()

maxBy、minBy方法:獲取比較器最大和最小值。返回的是Optional

    @Test
public void maxOrMinByTest(){
menu.stream().collect(Collectors.maxBy(Comparator.comparing(Student::getTotalScore))).ifPresent(System.out::println);
menu.stream().collect(Collectors.minBy(Comparator.comparing(Student::getTotalScore))).ifPresent(System.out::println);
}
2.9.reducing--型別reduce()

reducing方法:對收集器元素計算

    @Test
public void reducingTest(){
Integer result = menu.stream().map(Student::getTotalScore).collect(Collectors.reducing(0, (a, b) -> a + b));
System.out.println(result);
}
2.10.summarizingDouble*--彙總max,min,count,sum,avg(妙點)

summarizingDouble方法:彙總list中某屬性的所有彙總值(最大、最小、總數,總和,平均值)

    @Test
public void summarizingInt(){
DoubleSummaryStatistics result = menu.stream().collect(Collectors.summarizingDouble(Student::getTotalScore));
Optional.ofNullable(result).ifPresent(System.out::println);
}
2.11.toCollection--轉換成集合

toCollection方法:轉換收集器的集合型別

    //轉換成LinkedList
@Test
public void toCollectionTest(){
Optional.of(menu.stream().filter(s -> s.getTotalScore() > 600).collect(Collectors.toCollection(LinkedList::new))).ifPresent(s -> {
System.out.println(s.getClass());
System.out.println(s);
});
}
2.12.toMap--轉換成list

toMap方法:可以將list轉換成map(但要注意key值重複與value為空情況)

@Test
public void listToMapTest(){
// 1 list to map -- obj
List<User> users = Arrays.asList(
new User(101, "Jack"),
new User(102, "Kreas"),
new User(103, "Marry"),
// new User(103, "Marry2"),
new User(104, "Timi"),
new User(105, "Alice")
// new User(105, null)
); // key不能有重複
Map<Long, User> map = users.stream().collect(Collectors.toMap(User::getId, o -> o));
System.out.println(JSON.toJSONString(map));
// 1.2 list to map -- 屬性
Map<Long, String> map2 = users.stream().collect(Collectors.toMap(User::getId, User::getName));
System.out.println(JSON.toJSONString(map2)); // 3 list to map -- 解決key重複 value為空則報空指標
Map<Long, String> map3 = users.stream().collect(Collectors.toMap(User::getId, User::getName, (o1, o2) -> o1));
System.out.println(JSON.toJSONString(map3));
Map<Long, String> map4 = users.stream().collect(Collectors.toMap(User::getId, User::getName, (o1, o2) -> o2));
System.out.println(JSON.toJSONString(map4));
Map<Long, String> map5 = users.stream().collect(Collectors.toMap(User::getId, User::getName, (o1, o2) -> o1 + "," + o2));
System.out.println(JSON.toJSONString(map5)); // 4 list to map -- 解決value為空,但不能解決key值重複
Map<Long, String> map6 = users.stream().collect(Collectors.toMap(User::getId, o -> o.getName() == null ? "" : o.getName()));
System.out.println(JSON.toJSONString(map6));
}

注意:當有key重複以及value為null情況時,個人建議還是直接用put/putIfAbsent。

  Map<Long, String> map7 = new HashMap<>();
users.stream().forEach(user -> map7.put(user.getId(), user.getName()));
System.out.println(map7);

3.總結

個人認為:

Optional.ofNullable(物件).orElse(物件.builder().build()):防止空指標非常實用

Collectors裡面最重要的當屬groupingBy與summarizingDouble。其他的個人覺得知道要能看得懂是幹什麼用的,畢竟很多都可以直接在stream裡面直接處理好,沒必要在collect裡面處理。

另外:

map中重複值+1操作:computeIfAbsent可以實現

提取List成list<>:flatMap可以實現

List轉map:map的put/putifAbsent即可

Collectors參考連結:https://blog.csdn.net/sl1992/article/details/98900343

toMap參考連結:https://zyqok.blog.csdn.net/article/details/108646765?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EsearchFromBaidu%7Edefault-1.pc_relevant_baidujshouduan&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EsearchFromBaidu%7Edefault-1.pc_relevant_baidujshouduan

4.補充

4.1.Map操作--compute計算

Map:判斷list值,沒有就新增,有就value+1

    @Test
public void mapTest(){
/*
* compute:計算並更新值(但是可能會空指標)
computeIfAbsent:Value不存在時才計算
computeIfPresent:Value存在時才計算
* */
HashMap<String, Integer> prices = new HashMap<>(); // 往HashMap中新增對映關係
prices.put("Shoes", 180);
prices.put("Bag", 300);
prices.put(null, 150);
prices.put(null, 250);
System.out.println("HashMap: " + prices);
//有就不put,沒有才put
prices.putIfAbsent("Shoes", 1810); //有才put,沒有不put
prices.computeIfPresent("Shoes3", (key, value) -> value + 100); //有就不put
prices.computeIfAbsent("Shoes4", key -> 18120); //無論有無都put計算
prices.compute("Shoes2", (key, value) -> 1810);
prices.compute("Shoes2", (key, value) -> 1820);
System.out.println(prices); //給map中put值,有就 + 1,沒有就新增初始化為0
Map<String, AtomicInteger> countTagClientMap = new LinkedHashMap<>();
countTagClientMap.computeIfAbsent("a", value -> new AtomicInteger()).incrementAndGet(); //這個可以實現為空就put,否則 + 1
countTagClientMap.computeIfAbsent("a", value -> new AtomicInteger());
System.out.println(countTagClientMap);
countTagClientMap.computeIfPresent("a", (key, value) -> new AtomicInteger(value.incrementAndGet()));
countTagClientMap.compute("a", (key, value) -> value == null ? new AtomicInteger(1) : new AtomicInteger(value.incrementAndGet())); //這個可以實現為空就put,否則 + 1
System.out.println(countTagClientMap);
}
4.2.TreeMap--排序操作

treeMap:treeMap預設是對key值升序排序

    @Test
public void treeMap() {
// 對key值排序
TreeMap<Integer, Integer> map1 = new TreeMap<Integer, Integer>(); //預設的TreeMap升序排列
TreeMap<Integer, Integer> map2 = new TreeMap<Integer, Integer>(Comparator.reverseOrder());
map2.put(1, 2);
map2.put(2, 4);
map2.put(7, 1);
map2.put(5, 2);
System.out.println("Map2=" + map2); map1.put(1, 2);
map1.put(2, 4);
map1.put(7, 1);
map1.put(5, 2);
System.out.println("map1=" + map1);
}

書山有路勤為徑,學海無涯苦作舟。程式設計師不僅要懂程式碼,更要懂生活,關注我,一起進步。