摘要:國慶旅遊景點人太多,拍出來的照片全是人人人、車車車,該怎麼辦?不妨試試這個黑科技,讓你的出遊vlog秒變科幻大片。
本文分享自華為雲社群《國慶出遊神器,魔幻黑科技換天造物,讓vlog秒變科幻大片!》,作者:技術火炬手 。
國慶出遊,無論是拍人、拍景或是其他,“天空”都是關鍵元素。比如,一張平平無奇的景物圖加上落日餘暉的天空色調,氛圍感就有了。
當然,自然景觀的天空還不是最酷炫的。今天給大家介紹一款基於原生視訊的AI處理方法,不僅可以一鍵置換天空背景,還可以打造任意“天空之城”。
比如換成《星際迷航》中的浩瀚星空、宇宙飛船,將自己隨手拍的平平無奇vlog秒變為科幻大片,畫面毫無違和感。
該方法源自Github上的開源專案SkyAR,它可以自動識別天空,然後將天空從圖片中切割出來,再將天空替換成目標天空,從而實現魔法換天。
下面,我們將基於SkyAR和ModelArts的JupyterLab從零開始“換天造物”。只要腦洞夠大,利用這項AI技術,就可以創造出無限種玩法。
本案例在CPU和GPU下面均可執行,CPU環境執行預計花費9分鐘,GPU環境執行預計花費2分鐘。
實驗目標
通過本案例的學習:
瞭解影象分割的基本應用;
瞭解運動估計的基本應用;
瞭解影象混合的基本應用。
注意事項
- 如果您是第一次使用 JupyterLab,請檢視《ModelArts JupyterLab使用指導》瞭解使用方法;
- 如果您在使用 JupyterLab 過程中碰到報錯,請參考《ModelArts JupyterLab常見問題解決辦法》嘗試解決問題。
實驗步驟
1、安裝和匯入依賴包
- import os
- import moxing as mox
- file_name = 'SkyAR'
- if not os.path.exists(file_name):
- mox.file.copy('obs://modelarts-labs-bj4-v2/case_zoo/SkyAR/SkyAR.zip', 'SkyAR.zip')
- os.system('unzip SkyAR.zip')
- os.system('rm SkyAR.zip')
- mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/SkyAR/resnet50-19c8e357.pth', '/home/ma-user/.cache/torch/checkpoints/resnet50-19c8e357.pth')
- INFO:root:Using MoXing-v1.17.3-43fbf97f
- INFO:root:Using OBS-Python-SDK-3.20.7
- !pip uninstall opencv-python -y
- !pip uninstall opencv-contrib-python -y
- Found existing installation: opencv-python 4.1.2.30
- Uninstalling opencv-python-4.1.2.30:
- Successfully uninstalled opencv-python-4.1.2.30
- WARNING: Skipping opencv-contrib-python as it is not installed.
- !pip install opencv-contrib-python==4.5.3.56
- Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple
- Collecting opencv-contrib-python==4.5.3.56
- Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/3f/ce/36772cc6d9061b423b080e86919fd62cdef0837263f29ba6ff92e07f72d7/opencv_contrib_python-4.5.3.56-cp37-cp37m-manylinux2014_x86_64.whl (56.1 MB)
- |████████████████████████████████| 56.1 MB 166 kB/s eta 0:00:01|█████▋ | 9.8 MB 9.4 MB/s eta 0:00:05 MB 9.4 MB/s eta 0:00:05███▏ | 26.6 MB 9.4 MB/s eta 0:00:04/s eta 0:00:03��██▍ | 35.8 MB 9.4 MB/s eta 0:00:03�███████████▌ | 42.9 MB 9.4 MB/s eta 0:00:02��██████████████▎ | 49.6 MB 166 kB/s eta 0:00:40
- Requirement already satisfied: numpy>=1.14.5 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from opencv-contrib-python==4.5.3.56) (1.20.3)
- Installing collected packages: opencv-contrib-python
- Successfully installed opencv-contrib-python-4.5.3.56
- WARNING: You are using pip version 20.3.3; however, version 21.1.3 is available.
- You should consider upgrading via the '/home/ma-user/anaconda3/envs/PyTorch-1.4/bin/python -m pip install --upgrade pip' command.
- cd SkyAR/
- /home/ma-user/work/Untitled Folder/SkyAR
- import time
- import json
- import base64
- import numpy as np
- import matplotlib.pyplot as plt
- import cv2
- import argparse
- from networks import *
- from skyboxengine import *
- import utils
- import torch
- from IPython.display import clear_output, Image, display, HTML
- %matplotlib inline
- # 如果存在GPU則在GPU上面執行
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- INFO:matplotlib.font_manager:generated new fontManager
2、預覽一下原視訊
- video_name = "test_videos/sky.mp4"
- def arrayShow(img):
- img = cv2.resize(img, (0, 0), fx=0.25, fy=0.25, interpolation=cv2.INTER_NEAREST)
- _,ret = cv2.imencode('.jpg', img)
- return Image(data=ret)
- # 開啟一個視訊流
- cap = cv2.VideoCapture(video_name)
- frame_id = 0
- while True:
- try:
- clear_output(wait=True) # 清除之前的顯示
- ret, frame = cap.read() # 讀取一幀圖片
- if ret:
- frame_id += 1
- if frame_id > 200:
- break
- cv2.putText(frame, str(frame_id), (5, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) # 畫frame_id
- tmp = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 轉換色彩模式
- img = arrayShow(frame)
- display(img) # 顯示圖片
- time.sleep(0.05) # 執行緒睡眠一段時間再處理下一幀圖片
- else:
- break
- except KeyboardInterrupt:
- cap.release()
- cap.release()
3、預覽一下要替換的天空圖片
- img= cv2.imread('skybox/sky.jpg')
- img2 = img[:,:,::-1]
- plt.imshow(img2)
- <matplotlib.image.AxesImage at 0x7fbea986c590>
4、自定義訓練引數
可以根據自己的需要, 修改下面的引數
skybox_center_crop: 天空體中心偏移
auto_light_matching: 自動亮度匹配
relighting_factor: 補光
recoloring_factor: 重新著色
halo_effect: 光環效應
- parameter = {
- "net_G": "coord_resnet50",
- "ckptdir": "./checkpoints_G_coord_resnet50",
- "input_mode": "video",
- "datadir": "./test_videos/sky.mp4",
- "skybox": "sky.jpg",
- "in_size_w": 384,
- "in_size_h": 384,
- "out_size_w": 845,
- "out_size_h": 480,
- "skybox_center_crop": 0.5,
- "auto_light_matching": False,
- "relighting_factor": 0.8,
- "recoloring_factor": 0.5,
- "halo_effect": True,
- "output_dir": "./jpg_output",
- "save_jpgs": False
- }
- str_json = json.dumps(parameter)
- class Struct:
- def __init__(self, **entries):
- self.__dict__.update(entries)
- def parse_config():
- data = json.loads(str_json)
- args = Struct(**data)
- return args
- args = parse_config()
- class SkyFilter():
- def __init__(self, args):
- self.ckptdir = args.ckptdir
- self.datadir = args.datadir
- self.input_mode = args.input_mode
- self.in_size_w, self.in_size_h = args.in_size_w, args.in_size_h
- self.out_size_w, self.out_size_h = args.out_size_w, args.out_size_h
- self.skyboxengine = SkyBox(args)
- self.net_G = define_G(input_nc=3, output_nc=1, ngf=64, netG=args.net_G).to(device)
- self.load_model()
- self.video_writer = cv2.VideoWriter('out.avi',
- cv2.VideoWriter_fourcc(*'MJPG'),
- 20.0,
- (args.out_size_w, args.out_size_h))
- self.video_writer_cat = cv2.VideoWriter('compare.avi',
- cv2.VideoWriter_fourcc(*'MJPG'),
- 20.0,
- (2*args.out_size_w, args.out_size_h))
- if os.path.exists(args.output_dir) is False:
- os.mkdir(args.output_dir)
- self.output_img_list = []
- self.save_jpgs = args.save_jpgs
- def load_model(self):
- # 載入預訓練的天空摳圖模型
- print('loading the best checkpoint...')
- checkpoint = torch.load(os.path.join(self.ckptdir, 'best_ckpt.pt'),
- map_location=device)
- self.net_G.load_state_dict(checkpoint['model_G_state_dict'])
- self.net_G.to(device)
- self.net_G.eval()
- def write_video(self, img_HD, syneth):
- frame = np.array(255.0 * syneth[:, :, ::-1], dtype=np.uint8)
- self.video_writer.write(frame)
- frame_cat = np.concatenate([img_HD, syneth], axis=1)
- frame_cat = np.array(255.0 * frame_cat[:, :, ::-1], dtype=np.uint8)
- self.video_writer_cat.write(frame_cat)
- # 定義結果緩衝區
- self.output_img_list.append(frame_cat)
- def synthesize(self, img_HD, img_HD_prev):
- h, w, c = img_HD.shape
- img = cv2.resize(img_HD, (self.in_size_w, self.in_size_h))
- img = np.array(img, dtype=np.float32)
- img = torch.tensor(img).permute([2, 0, 1]).unsqueeze(0)
- with torch.no_grad():
- G_pred = self.net_G(img.to(device))
- G_pred = torch.nn.functional.interpolate(G_pred,
- (h, w),
- mode='bicubic',
- align_corners=False)
- G_pred = G_pred[0, :].permute([1, 2, 0])
- G_pred = torch.cat([G_pred, G_pred, G_pred], dim=-1)
- G_pred = np.array(G_pred.detach().cpu())
- G_pred = np.clip(G_pred, a_max=1.0, a_min=0.0)
- skymask = self.skyboxengine.skymask_refinement(G_pred, img_HD)
- syneth = self.skyboxengine.skyblend(img_HD, img_HD_prev, skymask)
- return syneth, G_pred, skymask
- def cvtcolor_and_resize(self, img_HD):
- img_HD = cv2.cvtColor(img_HD, cv2.COLOR_BGR2RGB)
- img_HD = np.array(img_HD / 255., dtype=np.float32)
- img_HD = cv2.resize(img_HD, (self.out_size_w, self.out_size_h))
- return img_HD
- def process_video(self):
- # 逐幀處理視訊
- cap = cv2.VideoCapture(self.datadir)
- m_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
- img_HD_prev = None
- for idx in range(m_frames):
- ret, frame = cap.read()
- if ret:
- img_HD = self.cvtcolor_and_resize(frame)
- if img_HD_prev is None:
- img_HD_prev = img_HD
- syneth, G_pred, skymask = self.synthesize(img_HD, img_HD_prev)
- self.write_video(img_HD, syneth)
- img_HD_prev = img_HD
- if (idx + 1) % 50 == 0:
- print(f'processing video, frame {idx + 1} / {m_frames} ... ')
- else: # 如果到達最後一幀
- break
5、替換天空
替換後輸出的視訊為out.avi,前後對比的視訊為compare.avi
- sf = SkyFilter(args)
- sf.process_video()
- initialize skybox...
- initialize network with normal
- loading the best checkpoint...
- processing video, frame 50 / 360 ...
- processing video, frame 100 / 360 ...
- no good point matched
- processing video, frame 150 / 360 ...
- processing video, frame 200 / 360 ...
- processing video, frame 250 / 360 ...
- processing video, frame 300 / 360 ...
- processing video, frame 350 / 360 ...
6、對比原視訊和替換後的視訊
- video_name = "compare.avi"
- def arrayShow(img):
- _,ret = cv2.imencode('.jpg', img)
- return Image(data=ret)
- # 開啟一個視訊流
- cap = cv2.VideoCapture(video_name)
- frame_id = 0
- while True:
- try:
- clear_output(wait=True) # 清除之前的顯示
- ret, frame = cap.read() # 讀取一幀圖片
- if ret:
- frame_id += 1
- cv2.putText(frame, str(frame_id), (5, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) # 畫frame_id
- tmp = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 轉換色彩模式
- img = arrayShow(frame)
- display(img) # 顯示圖片
- time.sleep(0.05) # 執行緒睡眠一段時間再處理下一幀圖片
- else:
- break
- except KeyboardInterrupt:
- cap.release()
- cap.release()
如果要生成自己的視訊,只要將test_videos中的sky.mp4視訊和skybox中的sky.jpg圖片替換成自己的視訊和圖片,然後重新一鍵執行就可以了。趕快來試一試吧,讓你的國慶大片更出彩!
華為雲社群祝大家國慶節快樂,度過一個開心的假期!
附錄
本案例源自華為雲AI Gallery:魔幻黑科技,可換天造物,秒變科幻大片!