概述

  本文是基於jdk8_271版本進行分析的。
  Hashtable與HashMap一樣,是一個儲存key-value的雙列集合。底層是基於陣列+連結串列實現的,沒有紅黑樹結構。Hashtable預設初始化容量為11,Hashtable也會動態擴容,與HashMap不同的是,每次擴容的容量是原容量2倍+1。Hashtable的key和value都不允許為null。Hashtable在方法上都加了synchronized同步鎖。所以Hashtable是執行緒安全的,同時Hashtable的效率也相對較低。

資料結構

  • 實現繼承關係

1 public class Hashtable<K,V>
2 extends Dictionary<K,V>
3 implements Map<K,V>, Cloneable, java.io.Serializable
  1. Dictionary:
  2. Map:
  3. Cloneable:
  4. Serializable:
  • 成員變數

 1     // 存放hash表資料
2 private transient Entry<?,?>[] table;
3
4 // 元素數量
5 private transient int count;
6
7 // 閾值。元素數量達到該值,進行擴容
8 private int threshold;
9
10 // 載入因子,預設是0.75
11 private float loadFactor;
12
13 // 修改次數
14 private transient int modCount = 0;
  • 建構函式

  Hashtable預設初始化容量為11,預設載入因子的值為0.75(與HashMap一樣)。選擇0.75作為預設的載入因子,完全是時間和空間成本上尋求的一種折中選擇。載入因子過高雖然減少了空間開銷,但同時也增加了查詢成本;載入因子過低雖然可以減少查詢時間成本,但是空間利用率很低。

  Hashtable初始化容量值使用傳入的值(0除外),不會重新計算(HashMap需要重新計算,使得容量大小為2的指數次冪)。在構造方法建立物件時,會直接初始化陣列,沒有采用懶載入的方式。

 1     public Hashtable(int initialCapacity, float loadFactor) {
2 if (initialCapacity < 0)
3 throw new IllegalArgumentException("Illegal Capacity: "+
4 initialCapacity);
5 if (loadFactor <= 0 || Float.isNaN(loadFactor))
6 throw new IllegalArgumentException("Illegal Load: "+loadFactor);
7 // 如果初始化容量傳入的是0,則預設使用1
8 if (initialCapacity==0)
9 initialCapacity = 1;
10 this.loadFactor = loadFactor;
11 table = new Entry<?,?>[initialCapacity];
12 // 計算閾值。預計的閾值為初始化容量*載入因子,預計的閾值如果大於MAX_ARRAY_SIZE + 1,則實際閾值設定為MAX_ARRAY_SIZE + 1
13 threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
14 }
15
16 public Hashtable(int initialCapacity) {
17 // 傳入初始化容量,載入因子使用預設值0.75。初始化容量傳入的是多少就初始化多大(0除外;傳入的如果0,預設使用1),不需要再重新計算
18 this(initialCapacity, 0.75f);
19 }
20
21 public Hashtable() {
22 // 預設初始化容量11,預設載入因子0.75
23 this(11, 0.75f);
24 }
25
26 public Hashtable(Map<? extends K, ? extends V> t) {
27 // 初始化容量為傳入集合元素數量的2倍(至少為11),載入因子使用預設值0.75
28 this(Math.max(2*t.size(), 11), 0.75f);
29 putAll(t);
30 }

主要方法解析

  • 擴容方法

  這裡與HashMap擴容時候有點區別,連結串列資料遷移時候,Hashtable是在連結串列頭部插入(和之前連結串列反過來),HashMap是在尾部插入。

 1     protected void rehash() {
2 int oldCapacity = table.length; // 原容量值
3 Entry<?,?>[] oldMap = table; // 原陣列
4
5 // overflow-conscious code
6 int newCapacity = (oldCapacity << 1) + 1; // 預計擴容的容量為原容量的2倍+1
7 if (newCapacity - MAX_ARRAY_SIZE > 0) {
8 if (oldCapacity == MAX_ARRAY_SIZE) // 預計擴容容量如果大於容量最大值,並且原容量為容量最大值,則不進行擴容處理
9 // Keep running with MAX_ARRAY_SIZE buckets
10 return;
11 newCapacity = MAX_ARRAY_SIZE; // 預計擴容容量如果大於容量最大值,則將新容量設定為容量最大值
12 }
13 Entry<?,?>[] newMap = new Entry<?,?>[newCapacity]; // 構建一個新陣列
14
15 modCount++; // 修改次數+1
16 // 計算閾值。新容量值*載入因子,與容量最大值+1,兩個比較取最小值
17 threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
18 table = newMap;
19
20 for (int i = oldCapacity ; i-- > 0 ;) {
21 // 遍歷原陣列,從後往前
22 for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
23 // 遍歷該索引位連結串列,這裡與jdk8中hashmap有點區別,這裡是在連結串列頭部插入(和之前連結串列會反過來),hashmap是在尾部插入
24 Entry<K,V> e = old;
25 old = old.next;
26
27 int index = (e.hash & 0x7FFFFFFF) % newCapacity;
28 e.next = (Entry<K,V>)newMap[index];
29 newMap[index] = e;
30 }
31 }
32 }
  • 新增元素

  新增元素時,Hashtable與HashMap有3點區別:

  1. Hashtable的key-value都不允許為null。
  2. Hashtable是在連結串列頭部插入(和之前連結串列反過來),HashMap是在尾部插入。
  3. Hashtable是先判斷是否需要擴容,再插入元素;jdk8HashMap是先插入元素再判斷是否需要擴容。
 1     public synchronized V put(K key, V value) {
2 // Make sure the value is not null
3 if (value == null) {
4 // value為空,會丟擲空指標異常
5 throw new NullPointerException();
6 }
7
8 // Makes sure the key is not already in the hashtable.
9 Entry<?,?> tab[] = table;
10 int hash = key.hashCode();
11 int index = (hash & 0x7FFFFFFF) % tab.length;
12 @SuppressWarnings("unchecked")
13 Entry<K,V> entry = (Entry<K,V>)tab[index];
14 for(; entry != null ; entry = entry.next) {
15 if ((entry.hash == hash) && entry.key.equals(key)) {
16 // 該key已經存在,直接替換原值
17 V old = entry.value;
18 entry.value = value;
19 return old;
20 }
21 }
22 // 新增元素
23 addEntry(hash, key, value, index);
24 return null;
25 }
26 private void addEntry(int hash, K key, V value, int index) {
27 modCount++;
28
29 Entry<?,?> tab[] = table;
30 if (count >= threshold) { // 判斷是否元素數量是否達到閾值,如果達到先進行擴容處理
31 // Rehash the table if the threshold is exceeded
32 rehash();
33
34 tab = table;
35 hash = key.hashCode();
36 index = (hash & 0x7FFFFFFF) % tab.length;
37 }
38
39 // Creates the new entry.
40 @SuppressWarnings("unchecked")
41 Entry<K,V> e = (Entry<K,V>) tab[index];
42 // 插入元素是在連結串列頭部插入
43 tab[index] = new Entry<>(hash, key, value, e);
44 count++;
45 }
  • 刪除元素

 1     public synchronized V remove(Object key) {
2 Entry<?,?> tab[] = table;
3 int hash = key.hashCode();
4 int index = (hash & 0x7FFFFFFF) % tab.length;
5 @SuppressWarnings("unchecked")
6 Entry<K,V> e = (Entry<K,V>)tab[index];
7 for(Entry<K,V> prev = null ; e != null ; prev = e, e = e.next) {
8 if ((e.hash == hash) && e.key.equals(key)) {
9 modCount++;
10 if (prev != null) {
11 prev.next = e.next;
12 } else {
13 tab[index] = e.next;
14 }
15 count--;
16 V oldValue = e.value;
17 e.value = null;
18 return oldValue;
19 }
20 }
21 return null;
22 }
23 public synchronized boolean remove(Object key, Object value) {
24 Objects.requireNonNull(value);
25
26 Entry<?,?> tab[] = table;
27 int hash = key.hashCode();
28 int index = (hash & 0x7FFFFFFF) % tab.length;
29 @SuppressWarnings("unchecked")
30 Entry<K,V> e = (Entry<K,V>)tab[index];
31 for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
32 if ((e.hash == hash) && e.key.equals(key) && e.value.equals(value)) {
33 modCount++;
34 if (prev != null) {
35 prev.next = e.next;
36 } else {
37 tab[index] = e.next;
38 }
39 count--;
40 e.value = null;
41 return true;
42 }
43 }
44 return false;
45 }
  • 序列化/反序列化方法

 1     private void writeObject(java.io.ObjectOutputStream s)
2 throws IOException {
3 Entry<Object, Object> entryStack = null;
4
5 synchronized (this) {
6 // Write out the threshold and loadFactor
7 s.defaultWriteObject();
8
9 // Write out the length and count of elements
10 s.writeInt(table.length);
11 s.writeInt(count);
12
13 // Stack copies of the entries in the table
14 for (int index = 0; index < table.length; index++) {
15 Entry<?,?> entry = table[index];
16
17 while (entry != null) {
18 entryStack =
19 new Entry<>(0, entry.key, entry.value, entryStack);
20 entry = entry.next;
21 }
22 }
23 }
24
25 // Write out the key/value objects from the stacked entries
26 while (entryStack != null) {
27 s.writeObject(entryStack.key);
28 s.writeObject(entryStack.value);
29 entryStack = entryStack.next;
30 }
31 }
32
33 private void readObject(java.io.ObjectInputStream s)
34 throws IOException, ClassNotFoundException
35 {
36 // Read in the threshold and loadFactor
37 s.defaultReadObject();
38
39 // Validate loadFactor (ignore threshold - it will be re-computed)
40 if (loadFactor <= 0 || Float.isNaN(loadFactor))
41 throw new StreamCorruptedException("Illegal Load: " + loadFactor);
42
43 // Read the original length of the array and number of elements
44 int origlength = s.readInt();
45 int elements = s.readInt();
46
47 // Validate # of elements
48 if (elements < 0)
49 throw new StreamCorruptedException("Illegal # of Elements: " + elements);
50
51 // Clamp original length to be more than elements / loadFactor
52 // (this is the invariant enforced with auto-growth)
53 origlength = Math.max(origlength, (int)(elements / loadFactor) + 1);
54
55 // Compute new length with a bit of room 5% + 3 to grow but
56 // no larger than the clamped original length. Make the length
57 // odd if it's large enough, this helps distribute the entries.
58 // Guard against the length ending up zero, that's not valid.
59 int length = (int)((elements + elements / 20) / loadFactor) + 3;
60 if (length > elements && (length & 1) == 0)
61 length--;
62 length = Math.min(length, origlength);
63
64 if (length < 0) { // overflow
65 length = origlength;
66 }
67
68 // Check Map.Entry[].class since it's the nearest public type to
69 // what we're actually creating.
70 SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, length);
71 table = new Entry<?,?>[length];
72 threshold = (int)Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1);
73 count = 0;
74
75 // Read the number of elements and then all the key/value objects
76 for (; elements > 0; elements--) {
77 @SuppressWarnings("unchecked")
78 K key = (K)s.readObject();
79 @SuppressWarnings("unchecked")
80 V value = (V)s.readObject();
81 // sync is eliminated for performance
82 reconstitutionPut(table, key, value);
83 }
84 }
Dictionary