Pandas之:Pandas高階教程以鐵達尼號真實資料為例

簡介

今天我們會講解一下Pandas的高階教程,包括讀寫檔案、選取子集和圖形表示等。

讀寫檔案

資料處理的一個關鍵步驟就是讀取檔案進行分析,然後將分析處理結果再次寫入檔案。

Pandas支援多種檔案格式的讀取和寫入:

In [108]: pd.read_
read_clipboard() read_excel() read_fwf() read_hdf() read_json read_parquet read_sas read_sql_query read_stata
read_csv read_feather() read_gbq() read_html read_msgpack read_pickle read_sql read_sql_table read_table

接下來我們會以Pandas官網提供的Titanic.csv為例來講解Pandas的使用。

Titanic.csv提供了800多個泰坦利特號上乘客的資訊,是一個891 rows x 12 columns的矩陣。

我們使用Pandas來讀取這個csv:

In [5]: titanic=pd.read_csv("titanic.csv")

read_csv方法會將csv檔案轉換成為pandas 的DataFrame

預設情況下我們直接使用DF變數,會預設展示前5行和後5行資料:

In [3]: titanic
Out[3]:
PassengerId Survived Pclass Name Sex ... Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male ... 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female ... 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female ... 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female ... 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male ... 0 373450 8.0500 NaN S
.. ... ... ... ... ... ... ... ... ... ... ...
886 887 0 2 Montvila, Rev. Juozas male ... 0 211536 13.0000 NaN S
887 888 1 1 Graham, Miss. Margaret Edith female ... 0 112053 30.0000 B42 S
888 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female ... 2 W./C. 6607 23.4500 NaN S
889 890 1 1 Behr, Mr. Karl Howell male ... 0 111369 30.0000 C148 C
890 891 0 3 Dooley, Mr. Patrick male ... 0 370376 7.7500 NaN Q [891 rows x 12 columns]

可以使用head(n)和tail(n)來指定特定的行數:

In [4]: titanic.head(8)
Out[4]:
PassengerId Survived Pclass Name Sex ... Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male ... 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female ... 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female ... 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female ... 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male ... 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male ... 0 330877 8.4583 NaN Q
6 7 0 1 McCarthy, Mr. Timothy J male ... 0 17463 51.8625 E46 S
7 8 0 3 Palsson, Master. Gosta Leonard male ... 1 349909 21.0750 NaN S [8 rows x 12 columns]

使用dtypes可以檢視每一列的資料型別:

In [5]: titanic.dtypes
Out[5]:
PassengerId int64
Survived int64
Pclass int64
Name object
Sex object
Age float64
SibSp int64
Parch int64
Ticket object
Fare float64
Cabin object
Embarked object
dtype: object

使用to_excel可以將DF轉換為excel檔案,使用read_excel可以再次讀取excel檔案:

In [11]: titanic.to_excel('titanic.xlsx', sheet_name='passengers', index=False)

In [12]: titanic = pd.read_excel('titanic.xlsx', sheet_name='passengers')

使用info()可以來對DF進行一個初步的統計:

In [14]: titanic.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
Survived 891 non-null int64
Pclass 891 non-null int64
Name 891 non-null object
Sex 891 non-null object
Age 714 non-null float64
SibSp 891 non-null int64
Parch 891 non-null int64
Ticket 891 non-null object
Fare 891 non-null float64
Cabin 204 non-null object
Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB

DF的選擇

選擇列資料

DF的head或者tail方法只能顯示所有的列資料,下面的方法可以選擇特定的列資料。

In [15]: ages = titanic["Age"]

In [16]: ages.head()
Out[16]:
0 22.0
1 38.0
2 26.0
3 35.0
4 35.0
Name: Age, dtype: float64

每一列都是一個Series:

In [6]: type(titanic["Age"])
Out[6]: pandas.core.series.Series In [7]: titanic["Age"].shape
Out[7]: (891,)

還可以多選:

In [8]: age_sex = titanic[["Age", "Sex"]]

In [9]: age_sex.head()
Out[9]:
Age Sex
0 22.0 male
1 38.0 female
2 26.0 female
3 35.0 female
4 35.0 male

如果選擇多列的話,返回的結果就是一個DF型別:

In [10]: type(titanic[["Age", "Sex"]])
Out[10]: pandas.core.frame.DataFrame In [11]: titanic[["Age", "Sex"]].shape
Out[11]: (891, 2)

選擇行資料

上面我們講到了怎麼選擇列資料,下面我們來看看怎麼選擇行資料:

選擇客戶年齡大於35歲的:

In [12]: above_35 = titanic[titanic["Age"] > 35]

In [13]: above_35.head()
Out[13]:
PassengerId Survived Pclass Name Sex ... Parch Ticket Fare Cabin Embarked
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female ... 0 PC 17599 71.2833 C85 C
6 7 0 1 McCarthy, Mr. Timothy J male ... 0 17463 51.8625 E46 S
11 12 1 1 Bonnell, Miss. Elizabeth female ... 0 113783 26.5500 C103 S
13 14 0 3 Andersson, Mr. Anders Johan male ... 5 347082 31.2750 NaN S
15 16 1 2 Hewlett, Mrs. (Mary D Kingcome) female ... 0 248706 16.0000 NaN S [5 rows x 12 columns]

使用isin選擇Pclass在2和3的所有客戶:

In [16]: class_23 = titanic[titanic["Pclass"].isin([2, 3])]
In [17]: class_23.head()
Out[17]:
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S

上面的isin等於:

In [18]: class_23 = titanic[(titanic["Pclass"] == 2) | (titanic["Pclass"] == 3)]

篩選Age不是空的:

In [20]: age_no_na = titanic[titanic["Age"].notna()]

In [21]: age_no_na.head()
Out[21]:
PassengerId Survived Pclass Name Sex ... Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male ... 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female ... 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female ... 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female ... 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male ... 0 373450 8.0500 NaN S [5 rows x 12 columns]

同時選擇行和列

我們可以同時選擇行和列。

使用loc和iloc可以進行行和列的選擇,他們兩者的區別是loc是使用名字進行選擇,iloc是使用數字進行選擇。

選擇age>35的乘客名:

In [23]: adult_names = titanic.loc[titanic["Age"] > 35, "Name"]

In [24]: adult_names.head()
Out[24]:
1 Cumings, Mrs. John Bradley (Florence Briggs Th...
6 McCarthy, Mr. Timothy J
11 Bonnell, Miss. Elizabeth
13 Andersson, Mr. Anders Johan
15 Hewlett, Mrs. (Mary D Kingcome)
Name: Name, dtype: object

loc中第一個值表示行選擇,第二個值表示列選擇。

使用iloc進行選擇:

In [25]: titanic.iloc[9:25, 2:5]
Out[25]:
Pclass Name Sex
9 2 Nasser, Mrs. Nicholas (Adele Achem) female
10 3 Sandstrom, Miss. Marguerite Rut female
11 1 Bonnell, Miss. Elizabeth female
12 3 Saundercock, Mr. William Henry male
13 3 Andersson, Mr. Anders Johan male
.. ... ... ...
20 2 Fynney, Mr. Joseph J male
21 2 Beesley, Mr. Lawrence male
22 3 McGowan, Miss. Anna "Annie" female
23 1 Sloper, Mr. William Thompson male
24 3 Palsson, Miss. Torborg Danira female [16 rows x 3 columns]

使用plots作圖

怎麼將DF轉換成為多樣化的圖形展示呢?

要想在命令列中使用matplotlib作圖,那麼需要啟動ipython的QT環境:

ipython qtconsole --pylab=inline

直接使用plot來展示一下上面我們讀取的乘客資訊:

import matplotlib.pyplot as plt

import pandas as pd

titanic = pd.read_excel('titanic.xlsx', sheet_name='passengers')

titanic.plot()

橫座標就是DF中的index,列座標是各個列的名字。注意上面的列只展示的是數值型別的。

我們只展示age資訊:

titanic['Age'].plot()

預設的是柱狀圖,我們可以轉換圖形的形式,比如點圖:

titanic.plot.scatter(x="PassengerId",y="Age", alpha=0.5)

選擇資料中的PassengerId作為x軸,age作為y軸:

除了散點圖,還支援很多其他的影象:

[method_name for method_name in dir(titanic.plot) if not method_name.startswith("_")]
Out[11]:
['area',
'bar',
'barh',
'box',
'density',
'hexbin',
'hist',
'kde',
'line',
'pie',
'scatter']

再看一個box圖:

titanic['Age'].plot.box()

可以看到,乘客的年齡大多集中在20-40歲之間。

還可以將選擇的多列分別作圖展示:

titanic.plot.area(figsize=(12, 4), subplots=True)

指定特定的列:

titanic[['Age','Pclass']].plot.area(figsize=(12, 4), subplots=True)

還可以先畫圖,然後填充:

fig, axs = plt.subplots(figsize=(12, 4));

先畫一個空的圖,然後對其進行填充:

titanic['Age'].plot.area(ax=axs);

axs.set_ylabel("Age");

fig

使用現有的列建立新的列

有時候,我們需要對現有的列進行變換,以得到新的列,比如我們想新增一個Age2列,它的值是Age列+10,則可以這樣:

titanic["Age2"]=titanic["Age"]+10;

titanic[["Age","Age2"]].head()
Out[34]:
Age Age2
0 22.0 32.0
1 38.0 48.0
2 26.0 36.0
3 35.0 45.0
4 35.0 45.0

還可以對列進行重新命名:

titanic_renamed = titanic.rename(
...: columns={"Age": "Age2",
...: "Pclass": "Pclas2"})

列名轉換為小寫:

titanic_renamed = titanic_renamed.rename(columns=str.lower)

進行統計

我們來統計下乘客的平均年齡:

titanic["Age"].mean()
Out[35]: 29.69911764705882

選擇中位數:

titanic[["Age", "Fare"]].median()
Out[36]:
Age 28.0000
Fare 14.4542
dtype: float64

更多資訊:

titanic[["Age", "Fare"]].describe()
Out[37]:
Age Fare
count 714.000000 891.000000
mean 29.699118 32.204208
std 14.526497 49.693429
min 0.420000 0.000000
25% 20.125000 7.910400
50% 28.000000 14.454200
75% 38.000000 31.000000
max 80.000000 512.329200

使用agg指定特定的聚合方法:

titanic.agg({'Age': ['min', 'max', 'median', 'skew'],'Fare': ['min', 'max', 'median', 'mean']})
Out[38]:
Age Fare
max 80.000000 512.329200
mean NaN 32.204208
median 28.000000 14.454200
min 0.420000 0.000000
skew 0.389108 NaN

可以使用groupby:

titanic[["Sex", "Age"]].groupby("Sex").mean()
Out[39]:
Age
Sex
female 27.915709
male 30.726645

groupby所有的列:

titanic.groupby("Sex").mean()
Out[40]:
PassengerId Survived Pclass Age SibSp Parch
Sex
female 431.028662 0.742038 2.159236 27.915709 0.694268 0.649682
male 454.147314 0.188908 2.389948 30.726645 0.429809 0.235702

groupby之後還可以選擇特定的列:

titanic.groupby("Sex")["Age"].mean()
Out[41]:
Sex
female 27.915709
male 30.726645
Name: Age, dtype: float64

可以分類進行count:

titanic["Pclass"].value_counts()
Out[42]:
3 491
1 216
2 184
Name: Pclass, dtype: int64

上面等同於:

titanic.groupby("Pclass")["Pclass"].count()

DF重組

可以根據某列進行排序:

titanic.sort_values(by="Age").head()
Out[43]:
PassengerId Survived Pclass Name Sex \
803 804 1 3 Thomas, Master. Assad Alexander male
755 756 1 2 Hamalainen, Master. Viljo male
644 645 1 3 Baclini, Miss. Eugenie female
469 470 1 3 Baclini, Miss. Helene Barbara female
78 79 1 2 Caldwell, Master. Alden Gates male

根據多列排序:

titanic.sort_values(by=['Pclass', 'Age'], ascending=False).head()
Out[44]:
PassengerId Survived Pclass Name Sex Age \
851 852 0 3 Svensson, Mr. Johan male 74.0
116 117 0 3 Connors, Mr. Patrick male 70.5
280 281 0 3 Duane, Mr. Frank male 65.0
483 484 1 3 Turkula, Mrs. (Hedwig) female 63.0
326 327 0 3 Nysveen, Mr. Johan Hansen male 61.0

選擇特定的行和列資料,下面的例子我們將會選擇性別為女性的部分資料:

female=titanic[titanic['Sex']=='female']

female_subset=female[["Age","Pclass","PassengerId","Survived"]].sort_values(["Pclass"]).groupby(["Pclass"]).head(2)

female_subset
Out[58]:
Age Pclass PassengerId Survived
1 38.0 1 2 1
356 22.0 1 357 1
726 30.0 2 727 1
443 28.0 2 444 1
855 18.0 3 856 1
654 18.0 3 655 0

使用pivot可以進行軸的轉換:

female_subset.pivot(columns="Pclass", values="Age")
Out[62]:
Pclass 1 2 3
1 38.0 NaN NaN
356 22.0 NaN NaN
443 NaN 28.0 NaN
654 NaN NaN 18.0
726 NaN 30.0 NaN
855 NaN NaN 18.0 female_subset.pivot(columns="Pclass", values="Age").plot()

本文已收錄於 http://www.flydean.com/02-python-pandas-advanced/

最通俗的解讀,最深刻的乾貨,最簡潔的教程,眾多你不知道的小技巧等你來發現!

歡迎關注我的公眾號:「程式那些事」,懂技術,更懂你!