1. 程式人生 > >ThreadPoolExecutor(線程池)源碼分析

ThreadPoolExecutor(線程池)源碼分析

情況 failed rac hashset 必須 ext 阻塞 throw ice

1. 常量和變量

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); // 高3位為線程池的運行狀態,低29位為當前線程總數

private static final int COUNT_BITS = Integer.SIZE - 3; // 32 -3 = 29
private static final int CAPACITY   = (1 << COUNT_BITS) - 1; // 線程池容量:2^29 - 1(0001,1111,1111,1111,1111,1111,1111,1111)
private
static final int RUNNING = -1 << COUNT_BITS; // 1110,0000,0000,0000,0000,0000,0000,0000 private static final int SHUTDOWN = 0 << COUNT_BITS; // 0000,0000,0000,0000,0000,0000,0000,0000 private static final int STOP = 1 << COUNT_BITS; // 0010,0000,0000,0000,0000,0000,0000,0000 private static final int TIDYING = 2 << COUNT_BITS; // 0100,0000,0000,0000,0000,0000,0000,0000 private static final
int TERMINATED = 3 << COUNT_BITS; // 0110,0000,0000,0000,0000,0000,0000,0000 // RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED // 1. 調用shutdown方法:RUNNING -> SHUTDOWN -> 中斷workers中所有空閑的工作線程(getTask中) // 立刻調用tryTerminate方法:SHUTDOWN -> TIDYING -> TERMINATED,若workQueue不為空,則線程池運行狀態保持為SHUTDOWN // 執行完workQueue中最後一個工作任務的工作線程在processWorkerExit中將調用tryTerminate方法:SHUTDOWN -> TIDYING -> TERMINATED
// 2. 調用shutdownNow方法:RUNNING || SHUTDOWN -> STOP -> 中斷workers中所有已經啟動的工作線程,獲取和清空workQueue中所有尚未執行的工作任務 // 立刻調用tryTerminate方法:STOP -> TIDYING -> TERMINATED private static int ctlOf(int rs, int wc) { return rs | wc; } private static int runStateOf(int c) { return c & ~CAPACITY; } // 取線程池的運行狀態(ctl高3位) private static int workerCountOf(int c) { return c & CAPACITY; } // 取當前線程總數(ctl低29位) private static boolean isRunning(int c) { return c < SHUTDOWN; } private static boolean runStateLessThan(int c, int s) { return c < s; } private static boolean runStateAtLeast(int c, int s) { return c >= s; } private boolean compareAndIncrementWorkerCount(int expect) { return ctl.compareAndSet(expect, expect + 1); } private boolean compareAndDecrementWorkerCount(int expect) { return ctl.compareAndSet(expect, expect - 1); } private void decrementWorkerCount() { do {} while (! compareAndDecrementWorkerCount(ctl.get())); } private final ReentrantLock mainLock = new ReentrantLock(); // workers鎖 private final Condition termination = mainLock.newCondition(); // 等待線程池的運行狀態成為TERMINATED(見awaitTermination方法) private final HashSet<Worker> workers = new HashSet<Worker>(); // 工作線程集合 private final BlockingQueue<Runnable> workQueue; // 工作任務隊列 private volatile int corePoolSize; // 最大核心線程數 private volatile int maximumPoolSize; // 最大線程數 private volatile long keepAliveTime; // 空閑核心線程的存活時間 private volatile ThreadFactory threadFactory; // 線程工廠 private volatile RejectedExecutionHandler handler; // 默認為defaultHandler private volatile boolean allowCoreThreadTimeOut; // 允許空閑核心線程超時退出 private int largestPoolSize; // 線程總數的最大值 private long completedTaskCount; // 線程池執行的工作任務總數 private static final RejectedExecutionHandler defaultHandler = new AbortPolicy(); // 拋異常 private static final RuntimePermission shutdownPerm = new RuntimePermission("modifyThread");

2. 父類AbstractExecutorService

不詳細講AbstractExecutorService,將會涉及到FutrueTask類,有空大家可以研究下。

public abstract class AbstractExecutorService implements ExecutorService {
    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
        return new FutureTask<T>(runnable, value);
    }

    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
        return new FutureTask<T>(callable);
    }

    public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null); // FutureTask
        execute(ftask);
        return ftask;
    }

    public <T> Future<T> submit(Runnable task, T result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task, result); // FutureTask
        execute(ftask);
        return ftask;
    }

    public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task); // FutureTask
        execute(ftask);
        return ftask;
    }

    ... ...
}

3. execute

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) { // 當前線程總數 < 核心線程數
        if (addWorker(command, true)) // 創建核心工作線程
            return;
        c = ctl.get();
    }
    if (isRunning(c) && workQueue.offer(command)) { // 線程池正在運行 -> 在workQueue中添加工作任務
        // 在workQueue中添加工作任務後需要確保兩件事情
        // 1. 線程池正在運行
        // 2. 在允許空閑核心線程超時退出的情況下:當前線程總數 > 0
        int recheck = ctl.get();
        if (! isRunning(recheck) && remove(command)) // 線程池正在關閉 -> 在workQueue中移除工作任務
            // 線程池成功關閉
            reject(command);
        else if (workerCountOf(recheck) == 0) // 當前線程總數為0:corePoolSize == 0 || 所有核心工作線程超時(見getTask)
            addWorker(null, false); // 創建非核心工作線程(未綁定工作任務:將在workQueue中取工作任務執行)
    }
    else if (!addWorker(command, false)) // 線程池正在關閉 || 未能在workQueue添加工作任務:創建非核心工作線程
        reject(command);
}

private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (;;) {
         // 線程池運行狀態發生變化將回到此處
        int c = ctl.get();                          /*記錄ctl*/
        int rs = runStateOf(c);
        // 線程池正在關閉 && (線程池運行狀態 > SHUTDOWN || 工作任務不為空 || 工作任務隊列為空)
        // 線程池運行狀態 > SHUTDOWN:STOP,不添加新的工作線程
        // SHUTDOWN && 工作任務不為空:不執行新的工作任務,不添加新的工作線程
        // SHUTDOWN && 工作任務隊列為空:workQueue不存在待執行的工作任務,不添加新的工作線程
        if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty()))
            return false;
        for (;;) {
            // CAS(ctl)失敗 && 線程池運行狀態未發生變化:回到此處
            int wc = workerCountOf(c);
            // 當前線程總數 >= 線程池容量 || 當前線程數 > 核心線程數(最大線程數)
            if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            if (compareAndIncrementWorkerCount(c)) /*CAS設置ctl++*/
                break retry;
            c = ctl.get();
            if (runStateOf(c) != rs) // 線程池運行狀態發生變化
                continue retry;
        }
    }
    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock(); // 加workers鎖
            try {
                int rs = runStateOf(ctl.get());
                // 線程池正在運行 || (線程池運行狀態為SHUTDOWN && 工作任務為空 )
                if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive())
                        throw new IllegalThreadStateException();
                    workers.add(w); // 添加工作線程到workers
                    int s = workers.size();
                    if (s > largestPoolSize) // 跟蹤和記錄線程總數的最大值
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock(); // 釋放workers鎖
            }
            if (workerAdded) {
                t.start(); // 啟動工作線程
                workerStarted = true; // 工作線程已啟動
            }
        }
    } finally {
        if (! workerStarted) // 工作線程未啟動
            addWorkerFailed(w);
    }
    return workerStarted;
}

private void addWorkerFailed(Worker w) {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock(); // 加workers鎖
    try {
        if (w != null)
            workers.remove(w); // 在workers中移除工作線程
        decrementWorkerCount(); // 當前工作線程總數--
        tryTerminate(); // 嘗試終止線程池(w可能為shutdown後最後一個退出的工作線程,當前線程必須負責終止線程池)
    } finally {
        mainLock.unlock(); // 釋放workers鎖
    }
}

public boolean remove(Runnable task) {
    boolean removed = workQueue.remove(task); // 在workQueue中移除工作任務
    tryTerminate(); // 嘗試終止線程池(task可能為shutdown後workQueue中的最後一個工作任務,當前線程必須負責終止線程池)
    return removed;
}

final void reject(Runnable command) {
    handler.rejectedExecution(command, this); // 默認拋異常
}

4. ThreadPoolExecutor.Worker

不詳細講AbstractSynchronizer,有空大家可以研究下RenentranLock。

private final class Worker extends AbstractQueuedSynchronizer implements Runnable {
    final Thread thread; // 實際線程
    Runnable firstTask; // 首個工作任務
    volatile long completedTasks; // 執行的工作任務總數

    Worker(Runnable firstTask) {
        setState(-1); // state = -1 :加鎖(未啟動,不被中斷)
        this.firstTask = firstTask;
        this.thread = getThreadFactory().newThread(this);
    }

    public void run() {
        runWorker(this); // 執行工作任務
    }

    void interruptIfStarted() { // 中斷已啟動的工作線程
        Thread t;
        if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
            try {
                t.interrupt();
            } catch (SecurityException ignore) {
            }
        }
    }


    public void lock()        { acquire(1); }
    public boolean tryLock()  { return tryAcquire(1); }
    public void unlock()      { release(1); } // 釋放鎖:state++(已啟動,可被中斷)
    
    ... ...
}

5. runWorker

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock();  // Worker.state++(已啟動,允許中斷)
    boolean completedAbruptly = true;
    try {
        while (task != null || (task = getTask()) != null) { // 執行綁定的工作任務 || 執行workQueue中的工作任務
            w.lock(); // 工作線程加鎖
            // 線程池運行狀態 >= STOP || (getTask時被中斷(清除中斷位) && 線程池運行狀態 >= STOP && 工作線程未再次被中斷)
            if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted())
                wt.interrupt(); // 中斷工作線程
            try {
                beforeExecute(wt, task); // noop
                Throwable thrown = null;
                try {
                    task.run(); // 執行工作任務
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown); // noop
                }
            } finally {
                task = null;
                w.completedTasks++; // 跟蹤和記錄w執行的工作任務總數
                w.unlock(); // 工作線程釋放鎖
            }
        }
        completedAbruptly = false; // 工作任務執行過程中未產生異常
    } finally {
        // 1. while正常退出(getTask == null):completedAbruptly為false
        // 2. while非正常退出(工作任務執行過程中產生異常,如被中斷):completedAbruptly為true
        processWorkerExit(w, completedAbruptly);
    }
}

private Runnable getTask() {
    boolean timedOut = false;
    for (;;) {
        // CAS(ctl)失敗 || keepAliveTime內未取到工作任務 || 取工作任務時被中斷:回到此處
        int c = ctl.get();                          /*記錄ctl*/
        int rs = runStateOf(c);
        // 線程池運行狀態 >= SHUTDOWN && (線程池運行狀態 >= STOP || workQueue為空)
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            decrementWorkerCount(); // 當前線程工作總數--
            return null;
        }
        int wc = workerCountOf(c);
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; // 核心線程允許超時 || 當前線程總數 > 最大核心線程數
        if ((wc > maximumPoolSize || // 當前線程總數 > 最大線程數
                (timed && timedOut)) && // (核心線程允許超時 && 線程已超時) || 當前線程總數 > 最大核心線程數
                    (wc > 1 || workQueue.isEmpty())) { // 當前線程總數 > 1 || workQueue為空
            if (compareAndDecrementWorkerCount(c))  /*CAS設置ctl--*/
                return null;
            continue;
        }
        try {
             // 取工作任務(keepAliveTime內 || 永久等待)
            Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take();
            if (r != null)
                return r;
            timedOut = true; // 超時:keepAliveTime內未取到工作任務
        } catch (InterruptedException retry) { // 取工作任務時被中斷
            timedOut = false; // 取工作任務時未超時
        }
    }
}

protected void beforeExecute(Thread t, Runnable r) { }
protected void afterExecute(Runnable r, Throwable t) { }

private void processWorkerExit(Worker w, boolean completedAbruptly) {
    if (completedAbruptly) // 工作任務執行過程中產生異常,如被中斷
        decrementWorkerCount(); // CAS設置ctl--(區別compareAndDecrementWorkerCount)
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock(); // 加workers鎖
    try {
        completedTaskCount += w.completedTasks; // 跟蹤和記錄線程池執行的工作任務總數
        workers.remove(w); // 在workers中移除當前工作線程
    } finally {
        mainLock.unlock(); // 釋放workers鎖
    }
    tryTerminate(); // 嘗試終止線程池(可能是shutdown後最後一個即將退出的工作線程)
    int c = ctl.get();
    if (runStateLessThan(c, STOP)) { // 線程池運行狀態 < STOP
        if (!completedAbruptly) { // 工作任務執行過程中未產生異常
            int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
            if (min == 0 && ! workQueue.isEmpty()) // 最後一個超時退出的工作線程 && workQueue不為空
                min = 1;
            if (workerCountOf(c) >= min) // 當前線程總數 >= min
                return;
        }
        addWorker(null, false); // 補充一個工作線程
    }
}

6. shutdown和shutdownNow

public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock(); // 加workers鎖
    try {
        checkShutdownAccess();
        advanceRunState(SHUTDOWN); // 若當前線程運行狀態 < SHUTDOWN,則當前運行狀態置為SHUTDOWN
        interruptIdleWorkers(); // 中斷所有空閑的工作線程
        onShutdown(); // noop
    } finally {
        mainLock.unlock(); // 釋放workers鎖
    }
    tryTerminate(); // 嘗試終止線程池
}

private void advanceRunState(int targetState) {
    for (;;) {
        int c = ctl.get();                                                  /*記錄ctl*/
        if (runStateAtLeast(c, targetState) || // 當前線程運行狀態 >= targetState
                ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c)))) /*CAS設置ctl = targetState*/
            break;
    }
}

private void interruptIdleWorkers() {
    interruptIdleWorkers(false); // 中斷所有空閑的工作線程
}

private void interruptIdleWorkers(boolean onlyOne) {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock(); // 加workers鎖
    try {
        for (Worker w : workers) {
            Thread t = w.thread;
            if (!t.isInterrupted() && w.tryLock()) { // 工作線程未被中斷 && 工作線程嘗試加鎖(正在執行的工作線程已加鎖,見runWorker方法)
                try {
                    t.interrupt(); // 中斷工作線程
                } catch (SecurityException ignore) {
                } finally {
                    w.unlock(); // 工作線程釋放鎖
                }
            }
            if (onlyOne) // 是否只中斷一個?
                break;
        }
    } finally {
        mainLock.unlock(); // 釋放workers鎖
    }
}

void onShutdown() { }

private static final boolean ONLY_ONE = true;

final void tryTerminate() {
    for (;;) {
        // CAS(ctl)失敗將回到此處
        int c = ctl.get();                                  /*記錄ctl*/
        // 線程池正在運行 || 線程池運行狀態 >= TIDYING || (線程運行狀態為SHUTDOWN && workQueue不為空)
        // 線程池正在運行:當前線程不終止線程池
        // 線程池運行狀態 >= TIDYING:線程池即將終止,當前線程不終止線程池
        // 線程運行狀態為SHUTDOWN && workQueue不為空:正在等待workQueue為空,當前線程不終止線程池
        if (isRunning(c) || runStateAtLeast(c, TIDYING) || (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
            return;
        if (workerCountOf(c) != 0) {
            // 中斷一個空閑的工作線程:可能之前未被shutdown方法中斷的工作線程已執行完畢,最後阻塞在workQueue上
            interruptIdleWorkers(ONLY_ONE);
            return;
        }
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock(); // 加workers鎖
        try {
            if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {  /*CAS設置ctl = TIDYING*/
                try {
                    terminated(); // noop
                } finally {
                    ctl.set(ctlOf(TERMINATED, 0)); // ctl = TERMINATED
                    termination.signalAll(); // 喚醒所有等待線程池結束的線程
                }
                return;
            }
        } finally {
            mainLock.unlock(); // 釋放workers鎖
        }
    }
}

protected void terminated() { }
// 可以在調用shutdown方法後調用awaitTermination方法等待線程池的運行狀態成為TERMINATED,即等待最後一個執行線程退出
public boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException {
    long nanos = unit.toNanos(timeout);
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        for (;;) {
            if (runStateAtLeast(ctl.get(), TERMINATED))
                return true;
            if (nanos <= 0)
                return false;
            nanos = termination.awaitNanos(nanos);
        }
    } finally {
        mainLock.unlock();
    }
}
public List<Runnable> shutdownNow() { // 中斷所有正在執行的工作線程,清空workers中空閑的工作線程
    List<Runnable> tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock(); // 加workers鎖
    try {
        checkShutdownAccess();
        advanceRunState(STOP); // 若當前線程運行狀態 < STOP,則當前運行狀態置為STOP
        interruptWorkers(); // 中斷所有已經啟動的工作線程
        tasks = drainQueue(); // 獲取和清空workQueue中所有尚未執行的工作任務
    } finally {
        mainLock.unlock(); // 釋放鎖
    }
    tryTerminate(); // 嘗試終止線程池
    return tasks; // return 所有尚未執行的工作任務
}

private void interruptWorkers() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock(); // 加workers鎖
    try {
        for (Worker w : workers)
            w.interruptIfStarted(); // w已經啟動則中斷t
    } finally {
        mainLock.unlock(); // 加wrokers鎖
    }
}

private List<Runnable> drainQueue() { // 獲取和清空workQueue中所有尚未執行的工作任務
    BlockingQueue<Runnable> q = workQueue;
    ArrayList<Runnable> taskList = new ArrayList<Runnable>();
    q.drainTo(taskList);
    if (!q.isEmpty()) {
        for (Runnable r : q.toArray(new Runnable[0])) {
            if (q.remove(r))
                taskList.add(r);
        }
    }
    return taskList;
}

ThreadPoolExecutor(線程池)源碼分析