1. 程式人生 > >吳恩達深度學習2-Week1課後作業3-梯度檢測

吳恩達深度學習2-Week1課後作業3-梯度檢測

一、deeplearning-assignment

神經網路的反向傳播很複雜,在某些時候需要對反向傳播演算法進行驗證,以證明確實有效,這時我們引入了“梯度檢測”。

反向傳播需要計算梯度 , 其中θ表示模型的引數。J是使用前向傳播和損失函式計算的。因為前向傳播實現相對簡單, 所以確信J的計算正確。現在讓我們回頭來看一下導數(或者梯度)的定義:

考慮一維線性函式 J(θ)=θx,該模型只包含一個實值引數θ, 並採取x作為輸入。

你將實現程式碼去計算 J(.)和它的導數,然後你將使用“Gradient Checking”去確保你關於J的導數計算是正確的。

梯度檢測原理:


二、相關演算法程式碼

import numpy as np
from week1.testCases import gradient_check_n_test_case
from gc_utils import sigmoid, relu, dictionary_to_vector, vector_to_dictionary, gradients_to_vector


def forward_propagation(x, theta):
    """

    :param x: a real-valued input
    :param theta:our parameter, a real number as well
    :return:J -- the value of function J, computed using the formula J(theta) = theta * x

    """

    J = theta * x

    return J


# x, theta = 2, 4
# J = forward_propagation(x, theta)
# print("J = " + str(J))


def backward_propagation(x, theta):
    """

    :param x:a real-valued input
    :param theta:our parameter, a real number as well
    :return:dtheta -- the gradient of the cost with respect to theta

    """

    dtheta = x

    return dtheta


# x, theta = 2, 4
# dtheta = backward_propagation(x, theta)
# print("dtheta = " + str(dtheta))


def gradient_check(x, theta, epsilon=1e-7):
    """

    :param x:a real-valued input
    :param theta:our parameter, a real number as well
    :param epsilon:tiny shift to the input to compute approximated gradient with formula(1)
    :return:difference -- difference (2) between the approximated gradient and the backward propagation gradient

    """

    thetaplus = theta + epsilon
    thetaminus = theta - epsilon
    J_plus = thetaplus * x
    J_minus = thetaminus * x
    gradapprox = (J_plus - J_minus) / (2 * epsilon)

    grad = backward_propagation(x, theta)

    numerator = np.linalg.norm(grad - gradapprox)
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)
    difference = numerator / denominator

    if difference < 1e-7:
        print("The gradient is correct!")
    else:
        print("The gradient is wrong!")

    return difference


# x, theta = 2, 4
# difference = gradient_check(x, theta)
# print("difference = " + str(difference))


def forward_propagation_n(X, Y, parameters):
    """

    :param X: training set for m examples
    :param Y:labels for m examples
    :param parameters:W1 -- weight matrix of shape (5, 4)
                    b1 -- bias vector of shape (5, 1)
                    W2 -- weight matrix of shape (3, 5)
                    b2 -- bias vector of shape (3, 1)
                    W3 -- weight matrix of shape (1, 3)
                    b3 -- bias vector of shape (1, 1)
    :return:cost -- the cost function (logistic cost for one example)

    """

    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    # Cost
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(-np.log(1 - A3), 1 - Y)
    cost = 1. / m * np.sum(logprobs)

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache


def backward_propagation_n(X, Y, cache):
    """

    :param X:input datapoint, of shape (input size, 1)
    :param Y:true "label"
    :param cache:cache output from forward_propagation_n()
    :return:gradients -- A dictionary with the gradients of the cost with respect to each parameter, activation and pre-activation variables.

    """

    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y
    dW3 = 1. / m * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    # dZ2 = np.multiply(dA2, Z2)
    dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    # dZ1 = np.multiply(dA1, Z1)
    dW1 = 1. / m * np.dot(dZ1, X.T)
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
                 "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
                 "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients


def gradient_check_n(parameters, gradients, X, Y, epsilon=1e-7):
    """

    :param parameters:python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"
    :param gradients:output of backward_propagation_n, contains gradients of the cost with respect to the parameters
    :param X:input datapoint, of shape (input size, 1)
    :param Y:true "label"
    :param epsilon:tiny shift to the input to compute approximated gradient with formula(1)
    :return:difference -- difference (2) between the approximated gradient and the backward propagation gradient

    """

    parameters_values, _ = dictionary_to_vector(parameters)
    grad = gradients_to_vector(gradients)
    num_parameters = parameters_values.shape[0]
    J_plus = np.zeros((num_parameters, 1))
    J_minus = np.zeros((num_parameters, 1))
    gradapprox = np.zeros((num_parameters, 1))

    for i in range(num_parameters):
        thetaplus = np.copy(parameters_values)
        thetaplus[i][0] = thetaplus[i][0] + epsilon
        J_plus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaplus))

        thetaminus = np.copy(parameters_values)
        thetaminus[i][0] = thetaminus[i][0] - epsilon
        J_minus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaminus))

        gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon)

    numerator = np.linalg.norm(gradapprox - grad)
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)
    difference = numerator / denominator

    if difference > 1e-6:
        print(
            "\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m")
    else:
        print(
            "\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m")

    return difference


X, Y, parameters = gradient_check_n_test_case()
cost, cache = forward_propagation_n(X, Y, parameters)
gradients = backward_propagation_n(X, Y, cache)
difference = gradient_check_n(parameters, gradients, X, Y)

結果發現誤差很大,通過debug檢查程式碼,發現dW2和db1的程式碼出現錯誤,通過重新改正並執行,得到正確結果:


三、總結

  1. 梯度檢測是非常慢的,出於這個原因我們不會在每次迭代時都運用梯度檢測演算法,只是偶爾檢測一下梯度下降是否正確。
  2. 不要在dropout正則化後運用梯度檢測,你只能在先通過梯度檢測來對反向傳播的梯度下降正確的前提下,再關掉它,再運用dropout。