1. 程式人生 > >python生成器generator:深度學習讀取batch圖片

python生成器generator:深度學習讀取batch圖片

在深度學習中訓練模型的過程中讀取圖片資料,如果將圖片資料全部讀入記憶體是不現實的,所以有必要使用生成器來讀取資料。

通過列表生成式,我們可以直接建立一個列表。但是,受到記憶體限制,列表容量肯定是有限的。而且,建立一個包含100萬個元素的列表,不僅佔用很大的儲存空間,如果我們僅僅需要訪問前面幾個元素,那後面絕大多數元素佔用的空間都白白浪費了。

所以,如果列表元素可以按照某種演算法推算出來,那我們是否可以在迴圈的過程中不斷推算出後續的元素呢?這樣就不必建立完整的list,從而節省大量的空間。在Python中,這種一邊迴圈一邊計算的機制,稱為生成器:generator。

建立generator有多種方法,第一種方法很簡單,只要把一個列表生成式的[]

改成(),就建立了一個generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

list中的元素可以直接打印出來 ,generator要一個一個打印出來,可以通過next()函式獲得generator的下一個返回值: 

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16

generator儲存的是演算法,每次呼叫next(g),就計算出g的下一個元素的值,直到計算到最後一個元素,沒有更多的元素時,丟擲StopIteration的錯誤。上面這種不斷呼叫next(g)實在是太變態了,正確的方法是使用for迴圈,因為generator也是可迭代物件:

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)

著名的斐波拉契數列(Fibonacci),除第一個和第二個數外,任意一個數都可由前兩個數相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ... 

斐波拉契數列用列表生成式寫不出來,但是,用函式把它打印出來卻很容易: 

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return 'done'

 仔細觀察,可以看出,fib函式實際上是定義了斐波拉契數列的推算規則,可以從第一個元素開始,推算出後續任意的元素,這種邏輯其實非常類似generator。

也就是說,上面的函式和generator僅一步之遙。要把fib函式變成generator,只需要把print(b)改為yield b就可以了:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'

這就是定義generator的另一種方法。如果一個函式定義中包含yield關鍵字,那麼這個函式就不再是一個普通函式,而是一個generator:

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

 這裡,最難理解的就是generator和函式的執行流程不一樣。函式是順序執行,遇到return語句或者最後一行函式語句就返回。而變成generator的函式,在每次呼叫next()的時候執行,遇到yield語句返回,再次執行時從上次返回的yield語句處繼續執行。

在迴圈過程中不斷呼叫yield,就會不斷中斷。當然要給迴圈設定一個條件來退出迴圈,不然就會產生一個無限數列出來。

同樣的,把函式改成generator後,我們基本上從來不會用next()來獲取下一個返回值,而是直接使用for迴圈來迭代:

>>> for n in fib(6):
...     print(n)
...
1
1
2
3
5
8

 最後在讀取圖片的實際應用中的程式碼如下:

def train_data(train_file,batch_size,resize_shape):
    datas, labels = read_data(train_file)
    num_batch = len(datas)//batch_size
    for i in range(num_batch):
        imgs = []
        train_datas = datas[batch_size*i:batch_size*(i+1)]
        train_lables = labels[batch_size*i:batch_size*(i+1)]
        for img_path in train_datas:
            img = cv2.imread(img_path)
            img = cv2.resize(img,resize_shape)
            img = img/255 #歸一化處理
            imgs.append(img)
        yield np.array(imgs),np.array(train_lables)

 

 參考:

廖雪峰 python程式設計