1. 程式人生 > >【8】Caffe學習系列:solver優化方法

【8】Caffe學習系列:solver優化方法

上文提到,到目前為止,caffe總共提供了六種優化方法:

  • Stochastic Gradient Descent (type: "SGD"),
  • AdaDelta (type: "AdaDelta"),
  • Adaptive Gradient (type: "AdaGrad"),
  • Adam (type: "Adam"),
  • Nesterov’s Accelerated Gradient (type: "Nesterov") and
  • RMSprop (type: "RMSProp")

Solver就是用來使loss最小化的優化方法。對於一個數據集D,需要優化的目標函式是整個資料集中所有資料loss的平均值。

其中,fW(x(i))計算的是資料x(i)上的loss, 先將每個單獨的樣本x的loss求出來,然後求和,最後求均值。 r(W)是正則項(weight_decay),為了減弱過擬合現象。

如果採用這種Loss 函式,迭代一次需要計算整個資料集,在資料集非常大的這情況下,這種方法的效率很低,這個也是我們熟知的梯度下降採用的方法。


在實際中,通過將整個資料集分成幾批(batches), 每一批就是一個mini-batch,其數量(batch_size)為N<<|D|,此時的loss 函式為:
 


有了loss函式後,就可以迭代的求解loss和梯度來優化這個問題。在神經網路中,用forward pass來求解loss,用backward pass來求解梯度。

在caffe中,預設採用的Stochastic Gradient Descent(SGD)進行優化求解。後面幾種方法也是基於梯度的優化方法(like SGD),因此本文只介紹一下SGD。其它的方法,有興趣的同學,可以去看文獻原文。

 

1、Stochastic gradient descent(SGD)

隨機梯度下降(Stochastic gradient descent)是在梯度下降法(gradient descent)的基礎上發展起來的,梯度下降法也叫最速下降法,具體原理在網易公開課《機器學習》中,吳恩達教授已經講解得非常詳細。SGD在通過負梯度和上一次的權重更新值Vt的線性組合來更新W,迭代公式如下:

 


 
其中,  是負梯度的學習率(base_lr),是上一次梯度值的權重(momentum),用來加權之前梯度方向對現在梯度下降方向的影響。這兩個引數需要通過tuning來得到最好的結果,一般是根據經驗設定的。如果你不知道如何設定這些引數,可以參考相關的論文。

在深度學習中使用SGD,比較好的初始化引數的策略是把學習率設為0.01左右(base_lr: 0.01),在訓練的過程中,如果loss開始出現穩定水平時,對學習率乘以一個常數因子(gamma),這樣的過程重複多次。

對於momentum,一般取值在0.5--0.99之間。通常設為0.9,momentum可以讓使用SGD的深度學習方法更加穩定以及快速。

關於更多的momentum,請參看Hinton的《A Practical Guide to Training Restricted Boltzmann Machines》。  

例項: 

base_lr: 0.01 
lr_policy: "step"
gamma: 0.1   
stepsize: 1000  
max_iter: 3500 
momentum: 0.9

lr_policy設定為step,則學習率的變化規則為 base_lr * gamma ^ (floor(iter / stepsize))

即前1000次迭代,學習率為0.01; 第1001-2000次迭代,學習率為0.001; 第2001-3000次迭代,學習率為0.00001,第3001-3500次迭代,學習率為10-5  

上面的設定只能作為一種指導,它們不能保證在任何情況下都能得到最佳的結果,有時候這種方法甚至不work。如果學習的時候出現diverge(比如,你一開始就發現非常大或者NaN或者inf的loss值或者輸出),此時你需要降低base_lr的值(比如,0.001),然後重新訓練,這樣的過程重複幾次直到你找到可以work的base_lr。

2、AdaDelta

AdaDelta是一種”魯棒的學習率方法“,是基於梯度的優化方法(like SGD)。

具體的介紹文獻:

M. Zeiler ADADELTA: AN ADAPTIVE LEARNING RATE METHODarXiv preprint, 2012.

示例:

 

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 1.0
lr_policy: "fixed"
momentum: 0.95
weight_decay: 0.0005
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_adadelta"
solver_mode: GPU
type: "AdaDelta"
delta: 1e-6

 

從最後兩行可看出,設定solver type為Adadelta時,需要設定delta的值。

3、AdaGrad

自適應梯度(adaptive gradient)是基於梯度的優化方法(like SGD)

具體的介紹文獻:

Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic OptimizationThe Journal of Machine Learning Research, 2011.

示例:

 

net: "examples/mnist/mnist_autoencoder.prototxt"
test_state: { stage: 'test-on-train' }
test_iter: 500
test_state: { stage: 'test-on-test' }
test_iter: 100
test_interval: 500
test_compute_loss: true
base_lr: 0.01
lr_policy: "fixed"
display: 100
max_iter: 65000
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "examples/mnist/mnist_autoencoder_adagrad_train"
# solver mode: CPU or GPU
solver_mode: GPU
type: "AdaGrad"

 

4、Adam

是一種基於梯度的優化方法(like SGD)。

 具體的介紹文獻:

D. Kingma, J. Ba. Adam: A Method for Stochastic OptimizationInternational Conference for Learning Representations, 2015.

5、NAG

Nesterov 的加速梯度法(Nesterov’s accelerated gradient)作為凸優化中最理想的方法,其收斂速度非常快。

 具體的介紹文獻:

 I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the Importance of Initialization and Momentum in Deep LearningProceedings of the 30th International Conference on Machine Learning, 2013.

示例:

net: "examples/mnist/mnist_autoencoder.prototxt"
test_state: { stage: 'test-on-train' }
test_iter: 500
test_state: { stage: 'test-on-test' }
test_iter: 100
test_interval: 500
test_compute_loss: true
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 10000
display: 100
max_iter: 65000
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "examples/mnist/mnist_autoencoder_nesterov_train"
momentum: 0.95
# solver mode: CPU or GPU
solver_mode: GPU
type: "Nesterov"

 

6、RMSprop

RMSprop是Tieleman在一次 Coursera課程演講中提出來的,也是一種基於梯度的優化方法(like SGD)

具體的介紹文獻:

T. Tieleman, and G. Hinton. RMSProp: Divide the gradient by a running average of its recent magnitudeCOURSERA: Neural Networks for Machine Learning.Technical report, 2012.

 示例:

 

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 1.0
lr_policy: "fixed"
momentum: 0.95
weight_decay: 0.0005
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_adadelta"
solver_mode: GPU
type: "RMSProp"
rms_decay: 0.98

 

最後兩行,需要設定rms_decay值。