1. 程式人生 > >Tensorflow學習筆記(第四天)—遞迴神經網路

Tensorflow學習筆記(第四天)—遞迴神經網路

一、首先下載來源於 Tomas Mikolov 網站上的 PTB 資料集 http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz


二、需要的程式碼: 這裡只簡單的放了一些程式碼,具體解釋可以看官方文件。還有這篇文章我覺得不錯: https://blog.csdn.net/mydear_11000/article/details/52440115

reader.py程式碼:

# -*- coding: utf-8 -*-

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #     http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================


"""Utilities for parsing PTB text files.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
import collections import os import sys
import tensorflow as tf
Py3 = sys.version_info[0] == 3
def _read_words(filename):   with tf.gfile.GFile(filename, "r") as f:     if Py3:       return f.read().replace("\n", "<eos>").split()     else:       return f.read().decode("utf-8").replace("\n", "<eos>").split()

def _build_vocab(filename):   data = _read_words(filename)
  counter = collections.Counter(data)   count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))
  words, _ = list(zip(*count_pairs))   word_to_id = dict(zip(words, range(len(words))))
  return word_to_id

def _file_to_word_ids(filename, word_to_id):   data = _read_words(filename)   return [word_to_id[word] for word in data if word in word_to_id]

def ptb_raw_data(data_path=None):   """Load PTB raw data from data directory "data_path".
  Reads PTB text files, converts strings to integer ids,   and performs mini-batching of the inputs.
  The PTB dataset comes from Tomas Mikolov's webpage:
  http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
  Args:     data_path: string path to the directory where simple-examples.tgz has       been extracted.
  Returns:     tuple (train_data, valid_data, test_data, vocabulary)     where each of the data objects can be passed to PTBIterator.   """
  train_path = os.path.join(data_path, "ptb.train.txt")   valid_path = os.path.join(data_path, "ptb.valid.txt")   test_path = os.path.join(data_path, "ptb.test.txt")
  word_to_id = _build_vocab(train_path)   train_data = _file_to_word_ids(train_path, word_to_id)   valid_data = _file_to_word_ids(valid_path, word_to_id)   test_data = _file_to_word_ids(test_path, word_to_id)   vocabulary = len(word_to_id)   return train_data, valid_data, test_data, vocabulary

def ptb_producer(raw_data, batch_size, num_steps, name=None):   """Iterate on the raw PTB data.
  This chunks up raw_data into batches of examples and returns Tensors that   are drawn from these batches.
  Args:     raw_data: one of the raw data outputs from ptb_raw_data.     batch_size: int, the batch size.     num_steps: int, the number of unrolls.     name: the name of this operation (optional).
  Returns:     A pair of Tensors, each shaped [batch_size, num_steps]. The second element     of the tuple is the same data time-shifted to the right by one.
  Raises:     tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.   """   with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):     raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)
    data_len = tf.size(raw_data)     batch_len = data_len // batch_size     data = tf.reshape(raw_data[0 : batch_size * batch_len],                       [batch_size, batch_len])
    epoch_size = (batch_len - 1) // num_steps     assertion = tf.assert_positive(         epoch_size,         message="epoch_size == 0, decrease batch_size or num_steps")     with tf.control_dependencies([assertion]):       epoch_size = tf.identity(epoch_size, name="epoch_size")
    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()     x = tf.strided_slice(data, [0, i * num_steps],                          [batch_size, (i + 1) * num_steps])     x.set_shape([batch_size, num_steps])     y = tf.strided_slice(data, [0, i * num_steps + 1],                          [batch_size, (i + 1) * num_steps + 1])     y.set_shape([batch_size, num_steps])     return x, y


ptb_word_lm.py程式碼:

# -*- coding: utf-8 -*-
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #     http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
"""Example / benchmark for building a PTB LSTM model.
Trains the model described in: (Zaremba, et. al.) Recurrent Neural Network Regularization http://arxiv.org/abs/1409.2329
There are 3 supported model configurations: =========================================== | config | epochs | train | valid  | test =========================================== | small  | 13     | 37.99 | 121.39 | 115.91 | medium | 39     | 48.45 |  86.16 |  82.07 | large  | 55     | 37.87 |  82.62 |  78.29 The exact results may vary depending on the random initialization.
The hyperparameters used in the model: - init_scale - the initial scale of the weights - learning_rate - the initial value of the learning rate - max_grad_norm - the maximum permissible norm of the gradient - num_layers - the number of LSTM layers - num_steps - the number of unrolled steps of LSTM - hidden_size - the number of LSTM units - max_epoch - the number of epochs trained with the initial learning rate - max_max_epoch - the total number of epochs for training - keep_prob - the probability of keeping weights in the dropout layer - lr_decay - the decay of the learning rate for each epoch after "max_epoch" - batch_size - the batch size - rnn_mode - the low level implementation of lstm cell: one of CUDNN,              BASIC, or BLOCK, representing cudnn_lstm, basic_lstm, and              lstm_block_cell classes.
The data required for this example is in the data/ dir of the PTB dataset from Tomas Mikolov's webpage:
$ wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz $ tar xvf simple-examples.tgz
To run:
$ python ptb_word_lm.py --data_path=simple-examples/data/
""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
import time
import numpy as np import tensorflow as tf
import reader import util
from tensorflow.python.client import device_lib
flags = tf.flags logging = tf.logging
flags.DEFINE_string(     "model", "small",     "A type of model. Possible options are: small, medium, large.") flags.DEFINE_string("data_path", None,                     "Where the training/test data is stored.") flags.DEFINE_string("save_path", None,                     "Model output directory.") flags.DEFINE_bool("use_fp16", False,                   "Train using 16-bit floats instead of 32bit floats") flags.DEFINE_integer("num_gpus", 1,                      "If larger than 1, Grappler AutoParallel optimizer "                      "will create multiple training replicas with each GPU "                      "running one replica.") flags.DEFINE_string("rnn_mode", None,                     "The low level implementation of lstm cell: one of CUDNN, "                     "BASIC, and BLOCK, representing cudnn_lstm, basic_lstm, "                     "and lstm_block_cell classes.") FLAGS = flags.FLAGS BASIC = "basic" CUDNN = "cudnn" BLOCK = "block"

def data_type():   return tf.float16 if FLAGS.use_fp16 else tf.float32

class PTBInput(object):   """The input data."""
  def __init__(self, config, data, name=None):     self.batch_size = batch_size = config.batch_size     self.num_steps = num_steps = config.num_steps     self.epoch_size = ((len(data) // batch_size) - 1) // num_steps     self.input_data, self.targets = reader.ptb_producer(         data, batch_size, num_steps, name=name)

class PTBModel(object):   """The PTB model."""
  def __init__(self, is_training, config, input_):     self._is_training = is_training     self._input = input_     self._rnn_params = None     self._cell = None     self.batch_size = input_.batch_size     self.num_steps = input_.num_steps     size = config.hidden_size     vocab_size = config.vocab_size
    with tf.device("/cpu:0"):       embedding = tf.get_variable(           "embedding", [vocab_size, size], dtype=data_type())       inputs = tf.nn.embedding_lookup(embedding, input_.input_data)
    if is_training and config.keep_prob < 1:       inputs = tf.nn.dropout(inputs, config.keep_prob)
    output, state = self._build_rnn_graph(inputs, config, is_training)
    softmax_w = tf.get_variable(         "softmax_w", [size, vocab_size], dtype=data_type())     softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type())     logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b)      # Reshape logits to be a 3-D tensor for sequence loss     logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size])
    # Use the contrib sequence loss and average over the batches     loss = tf.contrib.seq2seq.sequence_loss(         logits,         input_.targets,         tf.ones([self.batch_size, self.num_steps], dtype=data_type()),         average_across_timesteps=False,         average_across_batch=True)
    # Update the cost     self._cost = tf.reduce_sum(loss)     self._final_state = state
    if not is_training:       return
    self._lr = tf.Variable(0.0, trainable=False)     tvars = tf.trainable_variables()     grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars),                                       config.max_grad_norm)     optimizer = tf.train.GradientDescentOptimizer(self._lr)     self._train_op = optimizer.apply_gradients(         zip(grads, tvars),         global_step=tf.train.get_or_create_global_step())
    self._new_lr = tf.placeholder(         tf.float32, shape=[], name="new_learning_rate")     self._lr_update = tf.assign(self._lr, self._new_lr)
  def _build_rnn_graph(self, inputs, config, is_training):     if config.rnn_mode == CUDNN:       return self._build_rnn_graph_cudnn(inputs, config, is_training)     else:       return self._build_rnn_graph_lstm(inputs, config, is_training)
  def _build_rnn_graph_cudnn(self, inputs, config, is_training):     """Build the inference graph using CUDNN cell."""     inputs = tf.transpose(inputs, [1, 0, 2])     self._cell = tf.contrib.cudnn_rnn.CudnnLSTM(         num_layers=config.num_layers,         num_units=config.hidden_size,         input_size=config.hidden_size,         dropout=1 - config.keep_prob if is_training else 0)     params_size_t = self._cell.params_size()     self._rnn_params = tf.get_variable(         "lstm_params",         initializer=tf.random_uniform(             [params_size_t], -config.init_scale, config.init_scale),         validate_shape=False)     c = tf.zeros([config.num_layers, self.batch_size, config.hidden_size],                  tf.float32)     h = tf.zeros([config.num_layers, self.batch_size, config.hidden_size],                  tf.float32)     self._initial_state = (tf.contrib.rnn.LSTMStateTuple(h=h, c=c),)     outputs, h, c = self._cell(inputs, h, c, self._rnn_params, is_training)     outputs = tf.transpose(outputs, [1, 0, 2])     outputs = tf.reshape(outputs, [-1, config.hidden_size])     return outputs, (tf.contrib.rnn.LSTMStateTuple(h=h, c=c),)
  def _get_lstm_cell(self, config, is_training):     if config.rnn_mode == BASIC:       return tf.contrib.rnn.BasicLSTMCell(           config.hidden_size, forget_bias=0.0, state_is_tuple=True,           reuse=not is_training)     if config.rnn_mode == BLOCK:       return tf.contrib.rnn.LSTMBlockCell(           config.hidden_size, forget_bias=0.0)     raise ValueError("rnn_mode %s not supported" % config.rnn_mode)
  def _build_rnn_graph_lstm(self, inputs, config, is_training):     """Build the inference graph using canonical LSTM cells."""     # Slightly better results can be obtained with forget gate biases     # initialized to 1 but the hyperparameters of the model would need to be     # different than reported in the paper.     def make_cell():       cell = self._get_lstm_cell(config, is_training)       if is_training and config.keep_prob < 1:         cell = tf.contrib.rnn.DropoutWrapper(             cell, output_keep_prob=config.keep_prob)       return cell
    cell = tf.contrib.rnn.MultiRNNCell(         [make_cell() for _ in range(config.num_layers)], state_is_tuple=True)
    self._initial_state = cell.zero_state(config.batch_size, data_type())     state = self._initial_state     # Simplified version of tf.nn.static_rnn().     # This builds an unrolled LSTM for tutorial purposes only.     # In general, use tf.nn.static_rnn() or tf.nn.static_state_saving_rnn().     #     # The alternative version of the code below is:     #     # inputs = tf.unstack(inputs, num=self.num_steps, axis=1)     # outputs, state = tf.nn.static_rnn(cell, inputs,     #                                   initial_state=self._initial_state)     outputs = []     with tf.variable_scope("RNN"):       for time_step in range(self.num_steps):         if time_step > 0: tf.get_variable_scope().reuse_variables()         (cell_output, state) = cell(inputs[:, time_step, :], state)         outputs.append(cell_output)     output = tf.reshape(tf.concat(outputs, 1), [-1, config.hidden_size])     return output, state
  def assign_lr(self, session, lr_value):     session.run(self._lr_update, feed_dict={self._new_lr: lr_value})
  def export_ops(self, name):     """Exports ops to collections."""     self._name = name     ops = {util.with_prefix(self._name, "cost"): self._cost}     if self._is_training:       ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update)       if self._rnn_params:         ops.update(rnn_params=self._rnn_params)     for name, op in ops.items():       tf.add_to_collection(name, op)     self._initial_state_name = util.with_prefix(self._name, "initial")     self._final_state_name = util.with_prefix(self._name, "final")     util.export_state_tuples(self._initial_state, self._initial_state_name)     util.export_state_tuples(self._final_state, self._final_state_name)
  def import_ops(self):     """Imports ops from collections."""     if self._is_training:       self._train_op = tf.get_collection_ref("train_op")[0]       self._lr = tf.get_collection_ref("lr")[0]       self._new_lr = tf.get_collection_ref("new_lr")[0]       self._lr_update = tf.get_collection_ref("lr_update")[0]       rnn_params = tf.get_collection_ref("rnn_params")       if self._cell and rnn_params:         params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable(             self._cell,             self._cell.params_to_canonical,             self._cell.canonical_to_params,             rnn_params,             base_variable_scope="Model/RNN")         tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable)     self._cost = tf.get_collection_ref(util.with_prefix(self._name, "cost"))[0]     num_replicas = FLAGS.num_gpus if self._name == "Train" else 1     self._initial_state = util.import_state_tuples(         self._initial_state, self._initial_state_name, num_replicas)     self._final_state = util.import_state_tuples(         self._final_state, self._final_state_name, num_replicas)
  @property   def input(self):     return self._input
  @property   def initial_state(self):     return self._initial_state
  @property   def cost(self):     return self._cost
  @property   def final_state(self):     return self._final_state
  @property   def lr(self):     return self._lr
  @property   def train_op(self):     return self._train_op
  @property   def initial_state_name(self):     return self._initial_state_name
  @property   def final_state_name(self):     return self._final_state_name

class SmallConfig(object):   """Small config."""   init_scale = 0.1   learning_rate = 1.0   max_grad_norm = 5   num_layers = 2   num_steps = 20   hidden_size = 200   max_epoch = 4   max_max_epoch = 13   keep_prob = 1.0   lr_decay = 0.5   batch_size = 20   vocab_size = 10000   rnn_mode = BLOCK

class MediumConfig(object):   """Medium config."""   init_scale = 0.05   learning_rate = 1.0   max_grad_norm = 5   num_layers = 2   num_steps = 35   hidden_size = 650   max_epoch = 6   max_max_epoch = 39   keep_prob = 0.5   lr_decay = 0.8   batch_size = 20   vocab_size = 10000   rnn_mode = BLOCK

class LargeConfig(object):   """Large config."""   init_scale = 0.04   learning_rate = 1.0   max_grad_norm = 10   num_layers = 2   num_steps = 35   hidden_size = 1500   max_epoch = 14   max_max_epoch = 55   keep_prob = 0.35   lr_decay = 1 / 1.15   batch_size = 20   vocab_size = 10000   rnn_mode = BLOCK

class TestConfig(object):   """Tiny config, for testing."""   init_scale = 0.1   learning_rate = 1.0   max_grad_norm = 1   num_layers = 1   num_steps = 2   hidden_size = 2   max_epoch = 1   max_max_epoch = 1   keep_prob = 1.0   lr_decay = 0.5   batch_size = 20   vocab_size = 10000   rnn_mode = BLOCK

def run_epoch(session, model, eval_op=None, verbose=False):   """Runs the model on the given data."""   start_time = time.time()   costs = 0.0   iters = 0   state = session.run(model.initial_state)
  fetches = {       "cost": model.cost,       "final_state": model.final_state,   }   if eval_op is not None:     fetches["eval_op"] = eval_op
  for step in range(model.input.epoch_size):     feed_dict = {}     for i, (c, h) in enumerate(model.initial_state):       feed_dict[c] = state[i].c       feed_dict[h] = state[i].h
    vals = session.run(fetches, feed_dict)     cost = vals["cost"]     state = vals["final_state"]
    costs += cost     iters += model.input.num_steps
    if verbose and step % (model.input.epoch_size // 10) == 10:       print("%.3f perplexity: %.3f speed: %.0f wps" %             (step * 1.0 / model.input.epoch_size, np.exp(costs / iters),              iters * model.input.batch_size * max(1, FLAGS.num_gpus) /              (time.time() - start_time)))
  return np.exp(costs / iters)

def get_config():   """Get model config."""   config = None   if FLAGS.model == "small":     config = SmallConfig()   elif FLAGS.model == "medium":     config = MediumConfig()   elif FLAGS.model == "large":     config = LargeConfig()   elif FLAGS.model == "test":     config = TestConfig()   else:     raise ValueError("Invalid model: %s", FLAGS.model)   if FLAGS.rnn_mode:     config.rnn_mode = FLAGS.rnn_mode   if FLAGS.num_gpus != 1 or tf.__version__ < "1.3.0" :     config.rnn_mode = BASIC   return config

def main(_):   if not FLAGS.data_path:     raise ValueError("Must set --data_path to PTB data directory")   gpus = [       x.name for x in device_lib.list_local_devices() if x.device_type == "GPU"   ]   if FLAGS.num_gpus > len(gpus):     raise ValueError(         "Your machine has only %d gpus "         "which is less than the requested --num_gpus=%d."         % (len(gpus), FLAGS.num_gpus))
  raw_data = reader.ptb_raw_data(FLAGS.data_path)   train_data, valid_data, test_data, _ = raw_data
  config = get_config()   eval_config = get_config()   eval_config.batch_size = 1   eval_config.num_steps = 1
  with tf.Graph().as_default():     initializer = tf.random_uniform_initializer(-config.init_scale,                                                 config.init_scale)
    with tf.name_scope("Train"):       train_input = PTBInput(config=config, data=train_data, name="TrainInput")       with tf.variable_scope("Model", reuse=None, initializer=initializer):         m = PTBModel(is_training=True, config=config, input_=train_input)       tf.summary.scalar("Training Loss", m.cost)       tf.summary.scalar("Learning Rate", m.lr)
    with tf.name_scope("Valid"):       valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")       with tf.variable_scope("Model", reuse=True, initializer=initializer):         mvalid = PTBModel(is_training=False, config=config, input_=valid_input)       tf.summary.scalar("Validation Loss", mvalid.cost)
    with tf.name_scope("Test"):       test_input = PTBInput(           config=eval_config, data=test_data, name="TestInput")       with tf.variable_scope("Model", reuse=True, initializer=initializer):         mtest = PTBModel(is_training=False, config=eval_config,                          input_=test_input)
    models = {"Train": m, "Valid": mvalid, "Test": mtest}     for name, model in models.items():       model.export_ops(name)     metagraph = tf.train.export_meta_graph()     if tf.__version__ < "1.1.0" and FLAGS.num_gpus > 1:       raise ValueError("num_gpus > 1 is not supported for TensorFlow versions "                        "below 1.1.0")     soft_placement = False     if FLAGS.num_gpus > 1:       soft_placement = True       util.auto_parallel(metagraph, m)
  with tf.Graph().as_default():     tf.train.import_meta_graph(metagraph)     for model in models.values():       model.import_ops()     sv = tf.train.Supervisor(logdir=FLAGS.save_path)     config_proto = tf.ConfigProto(allow_soft_placement=soft_placement)     with sv.managed_session(config=config_proto) as session:       for i in range(config.max_max_epoch):         lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)         m.assign_lr(session, config.learning_rate * lr_decay)
        print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))         train_perplexity = run_epoch(session, m, eval_op=m.train_op,                                      verbose=True)         print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))         valid_perplexity = run_epoch(session, mvalid)         print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))
      test_perplexity = run_epoch(session, mtest)       print("Test Perplexity: %.3f" % test_perplexity)
      if FLAGS.save_path:         print("Saving model to %s." % FLAGS.save_path)         sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step)

if __name__ == "__main__":   tf.app.run()

三、執行 python E:\tensorflow_data\ptb_word_lm\ptb_word_lm.py --data_path=E:\tensorflow_data\ptb_word_lm\simple-examples\simple-examples\data  --model small

這裡只運行了一個小模型 執行結果:

在13個epoch時,我們的測試perplexity為113.984