1. 程式人生 > >廣義線性模型(Generalized Linear Models)

廣義線性模型(Generalized Linear Models)

看了一下斯坦福大學公開課:機器學習教程(吳恩達教授),記錄了一些筆記,寫出來以便以後有用到。筆記如有誤,還望告知。
本系列其它筆記:
線性迴歸(Linear Regression)
分類和邏輯迴歸(Classification and logistic regression)
廣義線性模型(Generalized Linear Models)

廣義線性模型(Generalized Linear Models)

我們目前學習的兩種不同演算法對p(y|x; θ

\theta )進行建模:
y R G a u s
s i a n d i s t r i
b u t i o n l e a s t   s q u a r e s   o f   l i n e a r   r e g r e s s i o n y { 0 , 1 } B e r n o u l l i d i s t r i b u t i o n l o g i s t i c   r e g r e s s i o n y \in \R \quad Gaussian \quad distribution \rightarrow least \ squares \ of \ linear \ regression \\ y \in \lbrace 0, 1 \rbrace \quad Bernoulli \quad distribution \rightarrow logistic \ regression

1 指數分佈族(The exponential family)

指數分佈族可寫成如下形式:
p ( y ; η ) = b ( y ) e x p ( η T T ( y ) a ( η ) ) η n a t u r a l p a r a m e t e r T ( y ) s u f f i c i e n t s t a t i s t i c T ( y ) = y p(y;\eta) = b(y)exp(\eta^{T}T(y) - a(\eta)) \\ \eta \rightarrow 分佈的自然引數(natural \quad parameter) \\ T(y) \rightarrow 充分統計量(sufficient \quad statistic) 通常情況下T(y) = y
對於伯努利分佈
B e r ( ϕ ) = { p ( y = 1     ϕ ) = ϕ p ( y = 0     ϕ ) = 1 ϕ Ber(\phi) = \left\{\begin{array}{} p(y = 1 \ | \ \phi) = \phi \\ p(y = 0 \ | \ \phi) = 1 - \phi \end{array}\right.

p ( y     ϕ ) = ϕ ( y ) ( 1 ϕ ) ( 1 y ) = exp ( log ( ϕ ( y ) ( 1 ϕ ) ( 1 y ) ) ) = exp ( log ( ϕ ( y ) ) + log ( ( 1 ϕ ) ( 1 y ) ) ) = exp ( y log ( ϕ ) + ( 1 y ) log ( 1 ϕ ) ) = exp ( y log ( ϕ 1 ϕ ) + log ( 1 ϕ ) ) p(y \ | \ \phi) = \phi^{(y)}(1-\phi)^{(1-y)} \\ = \exp(\log(\phi^{(y)}(1-\phi)^{(1-y)})) \\ = \exp(\log(\phi^{(y)}) + \log((1-\phi)^{(1-y)})) \\ = \exp(y\log(\phi) + (1-y)\log(1-\phi)) \\ = \exp(y\log(\frac{\phi}{1-\phi}) + \log(1-\phi))

T ( y ) = y , b ( y ) = 1 , η = log ϕ 1 ϕ T(y) = y, b(y) = 1, \eta = \log\frac{\phi}{1-\phi} ,則 ϕ = 1 1 + e η a ( η ) = log ( 1 ϕ ) = log ( 1 + e η ) \phi = \frac{1}{1 + e^{-\eta}},a(\eta) = -\log(1 - \phi) = \log(1+e^{\eta})

對於高斯分佈
p ( y     μ ; σ 2 ) = 1 2 π σ exp ( ( y μ ) 2 2 σ 2 ) = 1 2 π σ exp ( ( y 2 2 y μ + μ 2 ) 2 σ 2 ) = 1 2 π σ exp ( y 2 2 σ 2 ) exp ( 2 y μ μ 2 2 σ 2 ) p(y \ |\ \mu; \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{(y - \mu)^2}{2\sigma^2}) \\ = \frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{(y^2 - 2y\mu + \mu^2)}{2\sigma^2}) \\ = \frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{y^2}{2\sigma^2})\exp(\frac{2y\mu - \mu^2}{2\sigma^2})