1. 程式人生 > >27.以太坊原始碼分析(27)core-vm-jumptable-instruction原始碼分析

27.以太坊原始碼分析(27)core-vm-jumptable-instruction原始碼分析

jumptable. 是一個 [256]operation 的資料結構. 每個下標對應了一種指令, 使用operation來儲存了指令對應的處理邏輯, gas消耗, 堆疊驗證方法, memory使用的大小等功能.

jumptable

資料結構operation儲存了一條指令的所需要的函式.

type operation struct {
    // op is the operation function  執行函式
    execute executionFunc
    // gasCost is the gas function and returns the gas required for execution gas消耗函式
    gasCost gasFunc
    // validateStack validates the stack (size) for the operation 堆疊大小驗證函式
    validateStack stackValidationFunc
    // memorySize returns the memory size required for the operation 需要的記憶體大小
    memorySize memorySizeFunc

    halts   bool // indicates whether the operation shoult halt further execution 表示操作是否停止進一步執行
    jumps   bool // indicates whether the program counter should not increment 指示程式計數器是否不增加
    writes  bool // determines whether this a state modifying operation 確定這是否是一個狀態修改操作
    valid   bool // indication whether the retrieved operation is valid and known 指示檢索到的操作是否有效並且已知
    reverts bool // determines whether the operation reverts state (implicitly halts)確定操作是否恢復狀態(隱式停止)
    returns bool // determines whether the opertions sets the return data content 確定操作是否設定了返回資料內容
}

指令集, 下面定義了三種指令集,針對三種不同的以太坊版本,

var (
frontierInstructionSet = NewFrontierInstructionSet()
homesteadInstructionSet = NewHomesteadInstructionSet()
byzantiumInstructionSet = NewByzantiumInstructionSet()
)
NewByzantiumInstructionSet 拜占庭版本首先呼叫NewHomesteadInstructionSet創造了前一個版本的指令,然後增加自己特有的指令.STATICCALL ,RETURNDATASIZE ,RETURNDATACOPY ,REVERT

// NewByzantiumInstructionSet returns the frontier, homestead and
// byzantium instructions.
func NewByzantiumInstructionSet() [256]operation {
    // instructions that can be executed during the homestead phase.
    instructionSet := NewHomesteadInstructionSet()
    instructionSet[STATICCALL] = operation{
        execute:       opStaticCall,
        gasCost:       gasStaticCall,
        validateStack: makeStackFunc(6, 1),
        memorySize:    memoryStaticCall,
        valid:         true,
        returns:       true,
    }
    instructionSet[RETURNDATASIZE] = operation{
        execute:       opReturnDataSize,
        gasCost:       constGasFunc(GasQuickStep),
        validateStack: makeStackFunc(0, 1),
        valid:         true,
    }
    instructionSet[RETURNDATACOPY] = operation{
        execute:       opReturnDataCopy,
        gasCost:       gasReturnDataCopy,
        validateStack: makeStackFunc(3, 0),
        memorySize:    memoryReturnDataCopy,
        valid:         true,
    }
    instructionSet[REVERT] = operation{
        execute:       opRevert,
        gasCost:       gasRevert,
        validateStack: makeStackFunc(2, 0),
        memorySize:    memoryRevert,
        valid:         true,
        reverts:       true,
        returns:       true,
    }
    return instructionSet
}

NewHomesteadInstructionSet

// NewHomesteadInstructionSet returns the frontier and homestead
// instructions that can be executed during the homestead phase.
func NewHomesteadInstructionSet() [256]operation {
    instructionSet := NewFrontierInstructionSet()
    instructionSet[DELEGATECALL] = operation{
        execute:       opDelegateCall,
        gasCost:       gasDelegateCall,
        validateStack: makeStackFunc(6, 1),
        memorySize:    memoryDelegateCall,
        valid:         true,
        returns:       true,
    }
    return instructionSet
}

instruction.go

因為指令很多,所以不一一列出來, 只列舉幾個例子. 雖然組合起來的功能可以很複雜,但是單個指令來說,還是比較直觀的.

func opPc(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
    stack.push(evm.interpreter.intPool.get().SetUint64(*pc))
    return nil, nil
}

func opMsize(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
    stack.push(evm.interpreter.intPool.get().SetInt64(int64(memory.Len())))
    return nil, nil
}

gas_table.go

gas_table返回了各種指令消耗的gas的函式
這個函式的返回值基本上只有errGasUintOverflow 整數溢位的錯誤.

func gasBalance(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
    return gt.Balance, nil
}

func gasExtCodeSize(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
    return gt.ExtcodeSize, nil
}

func gasSLoad(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
    return gt.SLoad, nil
}

func gasExp(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
    expByteLen := uint64((stack.data[stack.len()-2].BitLen() + 7) / 8)

    var (
        gas      = expByteLen * gt.ExpByte // no overflow check required. Max is 256 * ExpByte gas
        overflow bool
    )
    if gas, overflow = math.SafeAdd(gas, GasSlowStep); overflow {
        return 0, errGasUintOverflow
    }
    return gas, nil
}

interpreter.go 直譯器

資料結構

// Config are the configuration options for the Interpreter
type Config struct {
    // Debug enabled debugging Interpreter options
    Debug bool
    // EnableJit enabled the JIT VM
    EnableJit bool
    // ForceJit forces the JIT VM
    ForceJit bool
    // Tracer is the op code logger
    Tracer Tracer
    // NoRecursion disabled Interpreter call, callcode,
    // delegate call and create.
    NoRecursion bool
    // Disable gas metering
    DisableGasMetering bool
    // Enable recording of SHA3/keccak preimages
    EnablePreimageRecording bool
    // JumpTable contains the EVM instruction table. This
    // may be left uninitialised and will be set to the default
    // table.
    JumpTable [256]operation
}

// Interpreter is used to run Ethereum based contracts and will utilise the
// passed evmironment to query external sources for state information.
// The Interpreter will run the byte code VM or JIT VM based on the passed
// configuration.
type Interpreter struct {
    evm      *EVM
    cfg      Config
    gasTable params.GasTable   // 標識了很多操作的Gas價格
    intPool  *intPool

    readOnly   bool   // Whether to throw on stateful modifications
    returnData []byte // Last CALL's return data for subsequent reuse 最後一個函式的返回值
}

建構函式

// NewInterpreter returns a new instance of the Interpreter.
func NewInterpreter(evm *EVM, cfg Config) *Interpreter {
    // We use the STOP instruction whether to see
    // the jump table was initialised. If it was not
    // we'll set the default jump table.
    // 用一個STOP指令測試JumpTable是否已經被初始化了, 如果沒有被初始化,那麼設定為預設值
    if !cfg.JumpTable[STOP].valid { 
        switch {
        case evm.ChainConfig().IsByzantium(evm.BlockNumber):
            cfg.JumpTable = byzantiumInstructionSet
        case evm.ChainConfig().IsHomestead(evm.BlockNumber):
            cfg.JumpTable = homesteadInstructionSet
        default:
            cfg.JumpTable = frontierInstructionSet
        }
    }

    return &Interpreter{
        evm:      evm,
        cfg:      cfg,
        gasTable: evm.ChainConfig().GasTable(evm.BlockNumber),
        intPool:  newIntPool(),
    }
}

直譯器一共就兩個方法enforceRestrictions方法和Run方法.

func (in *Interpreter) enforceRestrictions(op OpCode, operation operation, stack *Stack) error {
    if in.evm.chainRules.IsByzantium {
        if in.readOnly {
            // If the interpreter is operating in readonly mode, make sure no
            // state-modifying operation is performed. The 3rd stack item
            // for a call operation is the value. Transferring value from one
            // account to the others means the state is modified and should also
            // return with an error.
            if operation.writes || (op == CALL && stack.Back(2).BitLen() > 0) {
                return errWriteProtection
            }
        }
    }
    return nil
}

// Run loops and evaluates the contract's code with the given input data and returns
// the return byte-slice and an error if one occurred.
// 用給定的入參迴圈執行合約的程式碼,並返回返回的位元組片段,如果發生錯誤則返回錯誤。
// It's important to note that any errors returned by the interpreter should be
// considered a revert-and-consume-all-gas operation. No error specific checks
// should be handled to reduce complexity and errors further down the in.
// 重要的是要注意,直譯器返回的任何錯誤都會消耗全部gas。 為了減少複雜性,沒有特別的錯誤處理流程。
func (in *Interpreter) Run(snapshot int, contract *Contract, input []byte) (ret []byte, err error) {
    // Increment the call depth which is restricted to 1024
    in.evm.depth++
    defer func() { in.evm.depth-- }()

    // Reset the previous call's return data. It's unimportant to preserve the old buffer
    // as every returning call will return new data anyway.
    in.returnData = nil

    // Don't bother with the execution if there's no code.
    if len(contract.Code) == 0 {
        return nil, nil
    }

    codehash := contract.CodeHash // codehash is used when doing jump dest caching
    if codehash == (common.Hash{}) {
        codehash = crypto.Keccak256Hash(contract.Code)
    }

    var (
        op    OpCode        // current opcode
        mem   = NewMemory() // bound memory
        stack = newstack()  // local stack
        // For optimisation reason we're using uint64 as the program counter.
        // It's theoretically possible to go above 2^64. The YP defines the PC
        // to be uint256. Practically much less so feasible.
        pc   = uint64(0) // program counter
        cost uint64
        // copies used by tracer
        stackCopy = newstack() // stackCopy needed for Tracer since stack is mutated by 63/64 gas rule 
        pcCopy uint64 // needed for the deferred Tracer
        gasCopy uint64 // for Tracer to log gas remaining before execution
        logged bool // deferred Tracer should ignore already logged steps
    )
    contract.Input = input

    defer func() {
        if err != nil && !logged && in.cfg.Debug {
            in.cfg.Tracer.CaptureState(in.evm, pcCopy, op, gasCopy, cost, mem, stackCopy, contract, in.evm.depth, err)
        }
    }()

    // The Interpreter main run loop (contextual). This loop runs until either an
    // explicit STOP, RETURN or SELFDESTRUCT is executed, an error occurred during
    // the execution of one of the operations or until the done flag is set by the
    // parent context.
    // 直譯器的主要迴圈, 直到遇到STOP,RETURN,SELFDESTRUCT指令被執行,或者是遇到任意錯誤,或者說done 標誌被父context設定。
    for atomic.LoadInt32(&in.evm.abort) == 0 {
        // Get the memory location of pc
        // 難道下一個需要執行的指令
        op = contract.GetOp(pc)

        if in.cfg.Debug {
            logged = false
            pcCopy = uint64(pc)
            gasCopy = uint64(contract.Gas)
            stackCopy = newstack()
            for _, val := range stack.data {
                stackCopy.push(val)
            }
        }

        // get the operation from the jump table matching the opcode
        // 通過JumpTable拿到對應的operation
        operation := in.cfg.JumpTable[op]
        // 這裡檢查了只讀模式下面不能執行writes指令
        // staticCall的情況下會設定為readonly模式
        if err := in.enforceRestrictions(op, operation, stack); err != nil {
            return nil, err
        }

        // if the op is invalid abort the process and return an error
        if !operation.valid { //檢查指令是否非法
            return nil, fmt.Errorf("invalid opcode 0x%x", int(op))
        }

        // validate the stack and make sure there enough stack items available
        // to perform the operation
        // 檢查是否有足夠的堆疊空間。 包括入棧和出棧
        if err := operation.validateStack(stack); err != nil {
            return nil, err
        }

        var memorySize uint64
        // calculate the new memory size and expand the memory to fit
        // the operation
        if operation.memorySize != nil { // 計算記憶體使用量,需要收費
            memSize, overflow := bigUint64(operation.memorySize(stack))
            if overflow {
                return nil, errGasUintOverflow
            }
            // memory is expanded in words of 32 bytes. Gas
            // is also calculated in words.
            if memorySize, overflow = math.SafeMul(toWordSize(memSize), 32); overflow {
                return nil, errGasUintOverflow
            }
        }

        if !in.cfg.DisableGasMetering { //這個引數在本地模擬執行的時候比較有用,可以不消耗或者檢查GAS執行交易並得到返回結果
            // consume the gas and return an error if not enough gas is available.
            // cost is explicitly set so that the capture state defer method cas get the proper cost
            // 計算gas的Cost 並使用,如果不夠,就返回OutOfGas錯誤。
            cost, err = operation.gasCost(in.gasTable, in.evm, contract, stack, mem, memorySize)
            if err != nil || !contract.UseGas(cost) {
                return nil, ErrOutOfGas
            }
        }
        if memorySize > 0 { //擴大記憶體範圍
            mem.Resize(memorySize)
        }

        if in.cfg.Debug {
            in.cfg.Tracer.CaptureState(in.evm, pc, op, gasCopy, cost, mem, stackCopy, contract, in.evm.depth, err)
            logged = true
        }

        // execute the operation
        // 執行命令
        res, err := operation.execute(&pc, in.evm, contract, mem, stack)
        // verifyPool is a build flag. Pool verification makes sure the integrity
        // of the integer pool by comparing values to a default value.
        if verifyPool {
            verifyIntegerPool(in.intPool)
        }
        // if the operation clears the return data (e.g. it has returning data)
        // set the last return to the result of the operation.
        if operation.returns { //如果有返回值,那麼就設定返回值。 注意只有最後一個返回有效果。
            in.returnData = res
        }

        switch {
        case err != nil:
            return nil, err
        case operation.reverts:
            return res, errExecutionReverted
        case operation.halts:
            return res, nil
        case !operation.jumps:
            pc++
        }
    }
    return nil, nil
}