1. 程式人生 > >譜圖(Spectral Graph Theory)理解(2)

譜圖(Spectral Graph Theory)理解(2)

參考文章:Introduction to Spectral Graph Theory and Graph Clustering 作者:Chengming Jiang,ECS 231 Spring 2016 University of California, Davis 本文的目的是進行計算機影象分割: 在這裡插入圖片描述 圖1 影象分割

一、預備知識

關於圖(G)、度矩陣(D)、鄰接矩陣(A)皆在上一篇理解中交代過,現補充一些新的定義: 1、權重矩陣 A weighted graph is a pair G=(V,W) where

  • V={vi}V=\{v_i\} is a set of vertices and
    V=n\vert V\vert=n
    ;
  • WRn×nW\in \mathbb R^{n\times n} is called weight matrix with wij={wij0if ij0i=j w_{ij}=\begin{cases} w_{ij}\ge 0 & \text{if $i\neq j$}\\ 0 & \text{i=j}\end{cases} W是權重矩陣,V是頂點,它們構成對G=(V,W),即是權重圖G。 The underlying graph of G is G^=(
    V,E)\hat G=(V,E)
    with E={{vi,vj}wij>0}E=\{\{v_i,v_j\}\vert w_{ij}\gt 0\}
  • If wij{0,1},W=Aw_{ij}\in\{0,1\},W=A, the adjacency matrix of G^\hat G
  • Since wii=0w_{ii}=0, there is no self-loops in G^\hat G W是對A的一個擴充套件,當wij{0,1}w_{ij}\in\{0,1\},W即是A。定義W後,需要重新定義頂點的度(degree of a vertex)和度矩陣(degree matrix): d
    (vi)=j=1nwijdegree of vid(v_i)=\sum_{j=1}^n w_{ij} \qquad \text{degree of $v_i$}
    Let d(vi)=diD=D(G)=diag(d(v1), ,d(vn))=diag(d1, ,dn)\text{Let $d(v_i)=d_i$} \\D=D(G)=diag(d(v_1),\cdots,d(v_n))=diag(d_1,\cdots,d_n) 2、A的體積(Volume) 對於V的一個子集A(AVA\subseteq V),定義A的體積(Volume): vol(A)=viAd(vi)=viAj=1nwij vol(A)=\sum_{v_i \in A}d(v_i)=\sum_{v_i\in A}\sum_{j=1}^n w_{ij} 即A中所有頂點的度和,若A中所有頂點都是孤立的(isolated),則vol(A)=0,舉例如下: 在這裡插入圖片描述 圖2 vol(A)的計算方法 3、頂點集間的連線(links) Given two subsets of vertices A,BVA,B\subseteq V, we define the links links(A,B)links(A,B) by links(A,B)=viA,vjBwijlinks(A,B)=\sum_{v_i\in A, v_j \in B} w_{ij} Remarks:
    • A and B are not necessarily distinct;
    • Since W is symmetric, links(A,B)=links(B,A)links(A,B)=links(B,A)
    • vol(A)=links(A,V)vol(A)=links(A,V) 有了連線(links)定義,就可以定義分割(cut),它的定義如下: cut(A)=links(A,VA)cut(A)=links(A,V-A) 在連線(links)基礎上,還可以定義一個量assoc,如下: assoc(A)=links(A,A)assoc(A)=links(A,A) 即A中頂點自己的連線。cut是A和外部的links,assoc是A與內部的links。因此有:cut(A)+assoc(A)=vol(A)cut(A)+assoc(A)=vol(A) 4、Graph Laplacian 對於權重圖 G=(V,W),the (graph) Laplacian L of G is defined by L=DWL=D-W Laplacian具有以下的屬性:
    • xTLx=12i,j=1nwij(xixj)2x^TLx=\frac{1}{2}\sum_{i,j=1}^n w_{ij}(x_i-x_j)^2 for xRn\forall x\in \mathbb R^n,這是一個二次型
    • L0L\ge 0 if wij0w_{ij}\ge 0 for all i,j;
    • L1=0L\cdot \mathbf 1=\mathbf 0
    • If the underlying graph of G is connected, then 0=λ1λ2λ3λn0=\lambda_1\le\lambda_2\le\lambda_3\cdots \le\lambda_n
    • If the underlying graph of G is connected, then the dimension of the nullspace of L is 1.

圖的聚類(Graph clustering)

1、k-way partitioning 給定一個權重圖 G=(V,W),要找到一個對V的分割,使以下條件得到滿足:

  • A1A2Ak=VA_1\cup A_2 \cdots\cup A_k=V
  • A1A2Ak=A_1\cap A_2 \cdots\cap A_k=\emptyset
  • for any i and j, the edges between (Ai,Aj)(A_i,A_j) have low weight and the edges within AiA_i have high weight. 要使分割後各子集之間的edges的權重最小,對於2-way分割有: cut(A)=links(A,Aˉ)=viA,vjAˉwijcut(A)=links(A,\bar A)=\sum_{v_i\in A,v_j\in \bar A}w_{ij}, where Aˉ=VA