1. 程式人生 > >t-檢驗的原理及推導過程

t-檢驗的原理及推導過程

背景知識

定義

設總體XX(不管服從什麼分佈, 只要均值和方差存在)的均值為μ\mu, 方差為σ2\sigma^2, X1,X2, ,XnX_1, X_2, \cdots, X_n是來自XX的一個樣本,

均值

樣本均值定義如下 X=i=1nXi\overline{X} = \sum_{i=1}^n X_i 具有以下性質

  1. E(X)=μE(\overline{X}) = \mu 證明: E(X)=1nE(i=1nXi)=1ni=1nE(Xi)=1nnμ=μ \begin{aligned} E(\overline{X}) &= \frac{1}{n} E(\sum_{i=1}^n X_i) \\ &= \frac{1}{n} \sum_{i=1}^n E(X_i) \\ &= \frac{1}{n} \cdot n \mu \\ &= \mu \qquad 證畢 \end{aligned}
  2. D(X)=σ2/nD(\overline{X})=\sigma^2/n 證明: D(X)=D(1ni=1nXi)=1n2D(i=1nXi) \begin{aligned} D(\overline{X}) &= D(\frac{1}{n} \sum_{i=1}^n X_i) \\ &= \frac{1}{n^2} D(\sum_{i=1}^n X_i) \end{aligned} 根據方差的性質4D(X+Y)=D(X)+D(Y)+2E{(XE(X))(YE(Y))}D(X+Y)=D(X)+D(Y)+2E\{(X-E(X))(Y-E(Y))\} 且根據定義, X1,X2, ,XnX_1, X_2, \cdots, X_n之間相互獨立, 因此 D(X)=1n2D(i=1nXi)=1n2nD(Xi)=1n2nσ2=σ2/n \begin{aligned} D(\overline{X}) &= \frac{1}{n^2} D(\sum_{i=1}^n X_i) \\ &= \frac{1}{n^2} \cdot nD(X_i) \\ &= \frac{1}{n^2} \cdot n\sigma^2 \\ &= \sigma^2/n \qquad 證畢 \end{aligned}

樣本方差

樣本方差為定義如下 S2=1n1i=1n(XiX)2=1n1i=1n(Xi22XiX+X2)=1n1(i=1nXi22nXˉ2+nXˉ2)=1n1(i=1nXinXˉ2) \begin{aligned} S^2 &= \frac{1}{n-1} \sum_{i=1}^n \left( X_i - \overline{X} \right)^2 \\ &= \frac{1}{n-1} \sum_{i=1}^n \left( X_i^2 - 2 X_i \overline{X} + \overline{X}^2 \right) \\ &= \frac{1}{n-1} \left( \sum_{i=1}^n X_i^2 - 2n \bar{X}^2 + n\bar{X}^2 \right) \\ &= \frac{1}{n-1} \left( \sum_{i=1}^n X_i - n \bar{X}^2 \right) \end{aligned}

樣本方差具有如下性質 E(S2)=σ2E(S^2)=\sigma^2 證明: E(S2)=E[1n1(i=1nXi2nXˉ2)]=1n1[i=1nE(Xi2)nE(Xˉ2)] \begin{aligned} E(S^2) &= E \left[ \frac{1}{n-1} \left( \sum_{i=1}^n X_i^2 - n \bar{X}^2 \right) \right] \\ &= \frac{1}{n-1} \left[ \sum_{i=1}^n E(X_i^2) - n E(\bar{X}^2) \right] \\ \end{aligned} 根據根據方差的性質1D(X)=E(X2)[E(X)]2E(X2)=DX+[E(X)]2 \begin{aligned} &D(X)=E(X^2)-[E(X)]^2 \\ \Rightarrow &E(X^2) = DX + \left[ E(X) \right]^2 \end{aligned}