1. 程式人生 > >【閱讀筆記】Detection of time delays and directional interactions

【閱讀筆記】Detection of time delays and directional interactions

前幾天去廈門開會(DDAP10),全英文演講加之大家口音都略重,說實話聽演講主要靠看ppt,摘出一片聽懂的寫篇部落格紀念一下吧。

11.2 Session-A 13:30-18:00 WICC G201

Time Speaker No. Title
14:30-15:00 Wei Lin ST-07 Dynamical time series analytics: From networks construction to dynamics prediction

在這裡插入圖片描述

ABSTRACT

Data-based and model-free accurate identification of intrinsic(固有) time delays and directional interactions.

METHOD

Given a time series x(t)x(t), one forms a manifold(流形) MXRnM_X\in R^n based on delay coordinate embedding: X(t)=[x(t),x(tδt),...,x(t(n1)δt)]X(t) = [x(t),x(t − \delta t), . . . ,x(t − (n − 1)\delta t)], where nn is the embedding dimension and δ

t\delta t is a proper time lag.

CME method (detect time delay): Say we are given time series x(t)x(t) and y(t)y(t) as well as a set of possible time delays: KaTeX parse error: Unexpected character: '' at position 7: \Gamma̲ = {\tau_1,\tau…. For each candidate time delay τi\tau_i, we let z

(t)=x(tτi)z(t) = x(t − \tau_i) and form the manifolds MYM_Y and MZM_Z with nyn_y and nzn_z being the respective embedding dimensions. For each point Y(t^)MYY(\hat{t}) \in M_Y , we find KK nearest neighbors Y(tj)(j=1,2,,K)Y(t_j)(j = 1,2, …,K), which are mapped to the mutual neighbors Z(tj)MZ(j=1,2,,K)Z(t_j) \in M_Z(j = 1,2, …,K) by the cross map. We then estimate Z(t)Z(t) by averaging these mutual neighbors through Z^(t^)MY=(1/K)j=1KZ(tj)\hat{Z}(\hat{t})|M_Y=(1/K)\sum^K_{j=1}Z(t_j). Finally, we define the CME score as

s(τ)=(nZ)1trace(ΣZ^1cov(Z^,Z)ΣZ)s(\tau)=(n_Z)^{-1}trace(\Sigma_{\hat{Z}}^{-1}cov(\hat{Z},Z)\Sigma_Z)

It is straightforward to show 0s10\leq s\leq 1. The larger the value of ss, the stronger the driving force from x(tτ)x(t−\tau) to y(t)y(t). In a plot of s(τ)s(\tau), if there is a peak at τkΓ\tau_k\in \Gamma, the time delay from XX to YY can be identified as τk\tau_k. 可以理解為如果xx是以延遲τk\tau_k作用於yy,那麼當yy的情況(YY)類似時,τk\tau_k之前的xx(也就是zz)的情況(ZZ)也應該類似(協方差大,相關性強)。

RESULTS

To validate our CME method, we begin with a discrete-time logistic model of two non-identical species:

Xt+1=Xt(γxγxXtK1Ytτ1)X_{t+1}=X_t(\gamma_x-\gamma_xX_t-K_1Y_{t-\tau_1})

Yt+1=Yt(γyγyYtK2Xtτ2)Y_{t+1}=Y_t(\gamma_y-\gamma_yY_t-K_2X_{t-\tau_2})

where γx=3.78,γy=3.77\gamma_x=3.78, \gamma_y = 3.77, K1K_1 and K2K_2 are the coupling parameters, and τ1\tau_1 and τ2\tau_2 are the intrinsic time delays that we aim to determine from time series. 在這裡插入圖片描述 後面也舉了幾個微分方程的例子。 疑問:他所舉例都是兩個節點的連線,並沒有把方法運用到網路中。