1. 程式人生 > >想做AI工程師?這個案例必須掌握!(附完整程式碼Keras實現CNN)

想做AI工程師?這個案例必須掌握!(附完整程式碼Keras實現CNN)

有人說,2018年人工智慧已經進入了全球爆發的時刻。個性化資訊推送、人臉識別、語音操控等人工智慧技術,已“入侵”日常生活的細枝末節。

十多年前,所有的企業都在想辦法網際網路化,如今,所有的網際網路企業都在試圖AI化,據資料統計,平均每 10.9 個小時會誕生一家 AI 企業。在這樣的背景下,不難想象,未來機器學習技術將會是技術人的新門檻和領域。

那麼問題來了,作為一名技術者,我該如何轉型/學習 AI 技術?彆著急,本文將帶你入門AI第一課:《手把手教你Keras實現CNN》,讓你實現手寫數字識別準確率達到99.6%!(附完整程式碼)。

在我們安裝過Tensorflow後,安裝Keras預設將TF作為後端,Keras實現卷積網路的程式碼十分簡潔,而且keras中的callback類提供對模型訓練過程中變數的檢測方法,能夠根據檢測變數的情況及時的調整模型的學習效率和一些引數. 下面的例子,MNIST資料作為測試:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as pimg
import seaborn as sb         # 一個構建在matplotlib上的繪畫模組,支援numpy,pandas等資料結構
%matplotlib inline

from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix     # 混淆矩陣

import itertools
#  keras
from keras.utils import to_categorical         #數字標籤轉化成one-hot編碼
from keras.models import Sequential
from keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPool2D
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau
Using TensorFlow backend.
# 設定繪畫風格
sb.set(style='white', context='notebook', palette='deep')
# 載入資料
train_data = pd.read_csv('data/train.csv')
test_data = pd.read_csv('data/test.csv')
#train_x = train_data.drop(labels=['label'],axis=1)  # 去掉標籤列
train_x = train_data.iloc[:,1:]
train_y = train_data.iloc[:,0]
del  train_data   # 釋放一下記憶體
# 觀察一下訓練資料的分佈情況
g = sb.countplot(train_y)
train_y.value_counts()
1    4684
7    4401
3    4351
9    4188
2    4177
6    4137
0    4132
4    4072
8    4063
5    3795
Name: label, dtype: int64

train_x.isnull().describe() # 檢查是否存在確實值
train_x.isnull().any().describe()
count       784
unique        1
top       False
freq        784
dtype: object
test_data.isnull().any().describe()
count       784
unique        1
top       False
freq        784
dtype: object
# 歸一化
train_x =  train_x/255.0
test_x = test_data/255.0
del test_data

轉換資料的shape

# reshape trian_x, test_x
#train_x = train_x.values.reshape(-1, 28, 28, 1)
#test_x = test_x.values.reshape(-1, 28, 28, 1)
train_x = train_x.as_matrix().reshape(-1, 28, 28, 1)
test_x = test_x.as_matrix().reshape(-1, 28, 28, 1)
# 吧標籤列轉化為one-hot 編碼格式
train_y = to_categorical(train_y, num_classes = 10)
#從訓練資料中分出十分之一的資料作為驗證資料
random_seed = 3
train_x , val_x , train_y, val_y = train_test_split(train_x, train_y, test_size=0.1, random_state=random_seed)

一個訓練樣本

plt.imshow(train_x[0][:,:,0])

使用Keras搭建CNN

model = Sequential()
# 第一個卷積層,32個卷積核,大小5x5,卷積模式SAME,啟用函式relu,輸入張量的大小
model.add(Conv2D(filters= 32, kernel_size=(5,5), padding='Same', activation='relu',input_shape=(28,28,1)))
model.add(Conv2D(filters= 32, kernel_size=(5,5), padding='Same', activation='relu'))
# 池化層,池化核大小2x2
model.add(MaxPool2D(pool_size=(2,2)))
# 隨機丟棄四分之一的網路連線,防止過擬合
model.add(Dropout(0.25))  
model.add(Conv2D(filters= 64, kernel_size=(3,3), padding='Same', activation='relu'))
model.add(Conv2D(filters= 64, kernel_size=(3,3), padding='Same', activation='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
# 全連線層,展開操作,
model.add(Flatten())
# 新增隱藏層神經元的數量和啟用函式
model.add(Dense(256, activation='relu'))    
model.add(Dropout(0.25))
# 輸出層
model.add(Dense(10, activation='softmax'))  
# 設定優化器
# lr :學習效率, decay :lr的衰減值
optimizer = RMSprop(lr = 0.001, decay=0.0)
# 編譯模型
# loss:損失函式,metrics:對應效能評估函式
model.compile(optimizer=optimizer, loss = 'categorical_crossentropy',metrics=['accuracy'])

建立一個callback類的例項

# keras的callback類提供了可以跟蹤目標值,和動態調整學習效率
# moitor : 要監測的量,這裡是驗證準確率
# matience: 當經過3輪的迭代,監測的目標量,仍沒有變化,就會調整學習效率
# verbose : 資訊展示模式,去0或1
# factor : 每次減少學習率的因子,學習率將以lr = lr*factor的形式被減少
# mode:‘auto’,‘min’,‘max’之一,在min模式下,如果檢測值觸發學習率減少。在max模式下,當檢測值不再上升則觸發學習率減少。
# epsilon:閾值,用來確定是否進入檢測值的“平原區”
# cooldown:學習率減少後,會經過cooldown個epoch才重新進行正常操作
# min_lr:學習率的下限
learning_rate_reduction = ReduceLROnPlateau(monitor = 'val_acc', patience = 3,
                                            verbose = 1, factor=0.5, min_lr = 0.00001)
epochs = 40
batch_size = 100

資料增強處理

# 資料增強處理,提升模型的泛化能力,也可以有效的避免模型的過擬合
# rotation_range : 旋轉的角度
# zoom_range : 隨機縮放影象
# width_shift_range : 水平移動佔影象寬度的比例
# height_shift_range 
# horizontal_filp : 水平反轉
# vertical_filp : 縱軸方向上反轉
data_augment = ImageDataGenerator(rotation_range= 10,zoom_range= 0.1,
                                  width_shift_range = 0.1,height_shift_range = 0.1,
                                  horizontal_flip = False, vertical_flip = False)

訓練模型

history = model.fit_generator(data_augment.flow(train_x, train_y, batch_size=batch_size),
                             epochs= epochs, validation_data = (val_x,val_y),
                             verbose =2, steps_per_epoch=train_x.shape[0]//batch_size,
                             callbacks=[learning_rate_reduction])
Epoch 1/40
359s - loss: 0.4529 - acc: 0.8498 - val_loss: 0.0658 - val_acc: 0.9793
Epoch 2/40
375s - loss: 0.1188 - acc: 0.9637 - val_loss: 0.0456 - val_acc: 0.9848
Epoch 3/40
374s - loss: 0.0880 - acc: 0.9734 - val_loss: 0.0502 - val_acc: 0.9845
Epoch 4/40
375s - loss: 0.0750 - acc: 0.9767 - val_loss: 0.0318 - val_acc: 0.9902
Epoch 5/40
374s - loss: 0.0680 - acc: 0.9800 - val_loss: 0.0379 - val_acc: 0.9888
Epoch 6/40
369s - loss: 0.0584 - acc: 0.9823 - val_loss: 0.0267 - val_acc: 0.9910
Epoch 7/40
381s - loss: 0.0556 - acc: 0.9832 - val_loss: 0.0505 - val_acc: 0.9824
Epoch 8/40
381s - loss: 0.0531 - acc: 0.9842 - val_loss: 0.0236 - val_acc: 0.9912
Epoch 9/40
376s - loss: 0.0534 - acc: 0.9839 - val_loss: 0.0310 - val_acc: 0.9910
Epoch 10/40
379s - loss: 0.0537 - acc: 0.9848 - val_loss: 0.0274 - val_acc: 0.9917
Epoch 11/40
375s - loss: 0.0501 - acc: 0.9856 - val_loss: 0.0254 - val_acc: 0.9931
Epoch 12/40
382s - loss: 0.0492 - acc: 0.9860 - val_loss: 0.0212 - val_acc: 0.9924
Epoch 13/40
380s - loss: 0.0482 - acc: 0.9864 - val_loss: 0.0259 - val_acc: 0.9919
Epoch 14/40
373s - loss: 0.0488 - acc: 0.9858 - val_loss: 0.0305 - val_acc: 0.9905
Epoch 15/40

Epoch 00014: reducing learning rate to 0.000500000023749.
370s - loss: 0.0493 - acc: 0.9853 - val_loss: 0.0259 - val_acc: 0.9919
Epoch 16/40
367s - loss: 0.0382 - acc: 0.9888 - val_loss: 0.0176 - val_acc: 0.9936
Epoch 17/40
376s - loss: 0.0376 - acc: 0.9891 - val_loss: 0.0187 - val_acc: 0.9945
Epoch 18/40
376s - loss: 0.0410 - acc: 0.9885 - val_loss: 0.0220 - val_acc: 0.9926
Epoch 19/40
371s - loss: 0.0385 - acc: 0.9886 - val_loss: 0.0194 - val_acc: 0.9933
Epoch 20/40
372s - loss: 0.0345 - acc: 0.9894 - val_loss: 0.0186 - val_acc: 0.9938
Epoch 21/40

Epoch 00020: reducing learning rate to 0.000250000011874.
375s - loss: 0.0395 - acc: 0.9888 - val_loss: 0.0233 - val_acc: 0.9945
Epoch 22/40
369s - loss: 0.0313 - acc: 0.9907 - val_loss: 0.0141 - val_acc: 0.9955
Epoch 23/40
376s - loss: 0.0308 - acc: 0.9910 - val_loss: 0.0187 - val_acc: 0.9945
Epoch 24/40
374s - loss: 0.0331 - acc: 0.9908 - val_loss: 0.0170 - val_acc: 0.9940
Epoch 25/40
372s - loss: 0.0325 - acc: 0.9904 - val_loss: 0.0166 - val_acc: 0.9948
Epoch 26/40

Epoch 00025: reducing learning rate to 0.000125000005937.
373s - loss: 0.0319 - acc: 0.9904 - val_loss: 0.0167 - val_acc: 0.9943
Epoch 27/40
372s - loss: 0.0285 - acc: 0.9915 - val_loss: 0.0138 - val_acc: 0.9950
Epoch 28/40
375s - loss: 0.0280 - acc: 0.9913 - val_loss: 0.0150 - val_acc: 0.9950
Epoch 29/40

Epoch 00028: reducing learning rate to 6.25000029686e-05.
377s - loss: 0.0281 - acc: 0.9924 - val_loss: 0.0158 - val_acc: 0.9948
Epoch 30/40
374s - loss: 0.0265 - acc: 0.9920 - val_loss: 0.0134 - val_acc: 0.9952
Epoch 31/40
378s - loss: 0.0270 - acc: 0.9922 - val_loss: 0.0128 - val_acc: 0.9957
Epoch 32/40
372s - loss: 0.0237 - acc: 0.9930 - val_loss: 0.0133 - val_acc: 0.9957
Epoch 33/40
375s - loss: 0.0237 - acc: 0.9931 - val_loss: 0.0138 - val_acc: 0.9955
Epoch 34/40
371s - loss: 0.0276 - acc: 0.9920 - val_loss: 0.0135 - val_acc: 0.9962
Epoch 35/40
373s - loss: 0.0259 - acc: 0.9920 - val_loss: 0.0136 - val_acc: 0.9952
Epoch 36/40
369s - loss: 0.0249 - acc: 0.9924 - val_loss: 0.0126 - val_acc: 0.9952
Epoch 37/40
370s - loss: 0.0257 - acc: 0.9923 - val_loss: 0.0130 - val_acc: 0.9960
Epoch 38/40

Epoch 00037: reducing learning rate to 3.12500014843e-05.
374s - loss: 0.0252 - acc: 0.9926 - val_loss: 0.0136 - val_acc: 0.9950
Epoch 39/40
372s - loss: 0.0246 - acc: 0.9927 - val_loss: 0.0134 - val_acc: 0.9957
Epoch 40/40
371s - loss: 0.0247 - acc: 0.9929 - val_loss: 0.0139 - val_acc: 0.9950

在訓練過程當中,有幾次觸發學習效率衰減的條件,每當val_acc連續3輪沒有增長,就會把學習效率調整為當前的一半,調整之後,val_acc都有明顯的增長,但是在最後幾輪,模型可能已經收斂.

# learning curves
fig,ax = plt.subplots(2,1,figsize=(10,10))
ax[0].plot(history.history['loss'], color='r', label='Training Loss')
ax[0].plot(history.history['val_loss'], color='g', label='Validation Loss')
ax[0].legend(loc='best',shadow=True)
ax[0].grid(True)


ax[1].plot(history.history['acc'], color='r', label='Training Accuracy')
ax[1].plot(history.history['val_acc'], color='g', label='Validation Accuracy')
ax[1].legend(loc='best',shadow=True)
ax[1].grid(True)

# 混淆矩陣
def plot_sonfusion_matrix(cm, classes, normalize=False, title='Confusion matrix',cmap=plt.cm.Blues):
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)
    if normalize:
        cm = cm.astype('float')/cm.sum(axis=1)[:,np.newaxis]
    thresh = cm.max()/2.0
    for i,j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j,i,cm[i,j], horizontalalignment='center',color='white' if cm[i,j] > thresh else 'black')
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predict label')

驗證資料的混淆舉證

pred_y = model.predict(val_x)
pred_label = np.argmax(pred_y, axis=1)
true_label = np.argmax(val_y, axis=1)

confusion_mat = confusion_matrix(true_label, pred_label)

plot_sonfusion_matrix(confusion_mat, classes = range(10))

以上就是本文的案例,如果大家對本篇文章技術點一知半解,不能透徹理解,您可能需要從機器學習的基礎學起。

如果您決定踏入AI這個“坑”,在這裡我推薦 CSDN 學院出品的《人工智慧工程師》實訓營,目標是通過 120 天的實戰,將學員培養達到具備一年專案經驗的人工智慧工程師水平。CSDN 百天計劃課程共分為 3 個階段,4 個月完成。

聯絡 CSDN 學院職場規劃師,獲取一對一專屬服務,包括:IT 職場規劃服務/專屬折扣

閱讀原文,獲取更多資訊資訊