1. 程式人生 > >java agent基礎原理

java agent基礎原理

JVMTI

JVM Tool Interface,是jvm暴露出來的一些供使用者擴充套件的介面集合,JVMTI是基於事件驅動的,JVM每執行到一定的邏輯就會呼叫一些事件的回撥介面(如果有的話),這些介面可以供開發者去擴充套件自己的邏輯。

比如說我們最常見的想在某個類的位元組碼檔案讀取之後類定義之前能修改相關的位元組碼,從而使建立的class物件是我們修改之後的位元組碼內容,那我們就可以實現一個回撥函式賦給JvmtiEnv(JVMTI的執行時,通常一個JVMTIAgent對應一個jvmtiEnv,但是也可以對應多個)的回撥方法集合裡的ClassFileLoadHook,這樣在接下來的類檔案載入過程中都會呼叫到這個函式裡來了,大致實現如下:

    jvmtiEventCallbacks callbacks;
    jvmtiEnv *          jvmtienv = jvmti(agent);
    jvmtiError          jvmtierror;
    memset(&callbacks, 0, sizeof(callbacks));
    callbacks.ClassFileLoadHook = &eventHandlerClassFileLoadHook;
    jvmtierror = (*jvmtienv)->SetEventCallbacks( jvmtienv,
&callbacks, sizeof(callbacks));

JVMTIAgent

JVMTIAgent其實就是一個動態庫,利用JVMTI暴露出來的一些介面來幹一些我們想做但是正常情況下又做不到的事情,不過為了和普通的動態庫進行區分,它一般會實現如下的一個或者多個函式:

JNIEXPORT jint JNICALL
Agent_OnLoad(JavaVM *vm, char *options, void *reserved);
JNIEXPORT jint JNICALL Agent_OnAttach(JavaVM* vm, char* options, void* reserved); JNIEXPORT void JNICALL Agent_OnUnload(JavaVM *vm);
  • Agent_OnLoad函式,如果agent是在啟動的時候載入的,也就是在vm引數裡通過-agentlib來指定,那在啟動過程中就會去執行這個agent裡的Agent_OnLoad函式。
  • Agent_OnAttach函式,如果agent不是在啟動的時候載入的,是我們先attach到目標程序上,然後給對應的目標程序傳送load命令來載入agent,在載入過程中就會呼叫Agent_OnAttach函式。
  • Agent_OnUnload函式,在agent做解除安裝的時候呼叫,不過貌似基本上很少實現它。

其實我們每天都在和JVMTIAgent打交道,只是你可能沒有意識到而已,比如我們經常使用eclipse等工具對java程式碼做除錯,其實就利用了jre自帶的jdwp agent來實現的,只是由於eclipse等工具在沒讓你察覺的情況下將相關引數(類似-agentlib:jdwp=transport=dt_socket,suspend=y,address=localhost:61349)給自動加到程式啟動引數列表裡了,其中agentlib引數就是用來跟要載入的agent的名字,比如這裡的jdwp(不過這不是動態庫的名字,而JVM是會做一些名稱上的擴充套件,比如在linux下會去找libjdwp.so的動態庫進行載入,也就是在名字的基礎上加字首lib,再加字尾.so),接下來會跟一堆相關的引數,會將這些引數傳給Agent_OnLoad或者Agent_OnAttach函式裡對應的options引數。

javaagent

說到javaagent必須要講的是一個叫做instrument的JVMTIAgent(linux下對應的動態庫是libinstrument.so),因為就是它來實現javaagent的功能的,另外instrument agent還有個別名叫JPLISAgent(Java Programming Language Instrumentation Services Agent),從這名字裡也完全體現了其最本質的功能:就是專門為java語言編寫的插樁服務提供支援的。

instrument agent

instrument agent實現了Agent_OnLoadAgent_OnAttach兩方法,也就是說我們在用它的時候既支援啟動的時候來載入agent,也支援在執行期來動態來載入這個agent,其中啟動時載入agent還可以通過類似-javaagent:myagent.jar的方式來間接載入instrument agent,執行期動態載入agent依賴的是jvm的attach機制JVM Attach機制實現,通過傳送load命令來載入agent。

instrument agent的核心資料結構如下:

struct _JPLISAgent {
    JavaVM *                mJVM;                   /* handle to the JVM */
    JPLISEnvironment        mNormalEnvironment;     /* for every thing but retransform stuff */
    JPLISEnvironment        mRetransformEnvironment;/* for retransform stuff only */
    jobject                 mInstrumentationImpl;   /* handle to the Instrumentation instance */
    jmethodID               mPremainCaller;         /* method on the InstrumentationImpl that does the premain stuff (cached to save lots of lookups) */
    jmethodID               mAgentmainCaller;       /* method on the InstrumentationImpl for agents loaded via attach mechanism */
    jmethodID               mTransform;             /* method on the InstrumentationImpl that does the class file transform */
    jboolean                mRedefineAvailable;     /* cached answer to "does this agent support redefine" */
    jboolean                mRedefineAdded;         /* indicates if can_redefine_classes capability has been added */
    jboolean                mNativeMethodPrefixAvailable; /* cached answer to "does this agent support prefixing" */
    jboolean                mNativeMethodPrefixAdded;     /* indicates if can_set_native_method_prefix capability has been added */
    char const *            mAgentClassName;        /* agent class name */
    char const *            mOptionsString;         /* -javaagent options string */
};

struct _JPLISEnvironment {
    jvmtiEnv *              mJVMTIEnv;              /* the JVM TI environment */
    JPLISAgent *            mAgent;                 /* corresponding agent */
    jboolean                mIsRetransformer;       /* indicates if special environment */
};

這裡解釋下幾個重要項:

  • mNormalEnvironment:主要提供正常的類transform及redefine功能的。
  • mRetransformEnvironment:主要提供類retransform功能的。
  • mInstrumentationImpl:這個物件非常重要,也是我們java agent和JVM進行互動的入口,或許寫過javaagent的人在寫premain以及agentmain方法的時候注意到了有個Instrumentation的引數,這個引數其實就是這裡的物件。
  • mPremainCaller:指向sun.instrument.InstrumentationImpl.loadClassAndCallPremain方法,如果agent是在啟動的時候載入的,那該方法會被呼叫。
  • mAgentmainCaller:指向sun.instrument.InstrumentationImpl.loadClassAndCallAgentmain方法,該方法在通過attach的方式動態載入agent的時候呼叫。
  • mTransform:指向sun.instrument.InstrumentationImpl.transform方法。
  • mAgentClassName:在我們javaagent的MANIFEST.MF裡指定的Agent-Class
  • mOptionsString:傳給agent的一些引數。
  • mRedefineAvailable:是否開啟了redefine功能,在javaagent的MANIFEST.MF裡設定Can-Redefine-Classes:true
  • mNativeMethodPrefixAvailable:是否支援native方法字首設定,通樣在javaagent的MANIFEST.MF裡設定Can-Set-Native-Method-Prefix:true
  • mIsRetransformer:如果在javaagent的MANIFEST.MF檔案裡定義了Can-Retransform-Classes:true,那將會設定mRetransformEnvironment的mIsRetransformer為true。

啟動時載入instrument agent

正如『概述』裡提到的方式,就是啟動的時候載入instrument agent,具體過程都在InvocationAdapter.cAgent_OnLoad方法裡,簡單描述下過程:

  • 建立並初始化JPLISAgent
  • 監聽VMInit事件,在vm初始化完成之後做下面的事情:
    • 建立InstrumentationImpl物件
    • 監聽ClassFileLoadHook事件
    • 呼叫InstrumentationImpl的loadClassAndCallPremain方法,在這個方法裡會去呼叫javaagent裡MANIFEST.MF裡指定的Premain-Class類的premain方法
  • 解析javaagent裡MANIFEST.MF裡的引數,並根據這些引數來設定JPLISAgent裡的一些內容

執行時載入instrument agent

執行時載入的方式,大致按照下面的方式來操作:

VirtualMachine vm = VirtualMachine.attach(pid);
vm.loadAgent(agentPath, agentArgs);

上面會通過jvm的attach機制來請求目標jvm載入對應的agent,過程大致如下:

  • 建立並初始化JPLISAgent
  • 解析javaagent裡MANIFEST.MF裡的引數
  • 建立InstrumentationImpl物件
  • 監聽ClassFileLoadHook事件
  • 呼叫InstrumentationImpl的loadClassAndCallAgentmain方法,在這個方法裡會去呼叫javaagent裡MANIFEST.MF裡指定的Agent-Class類的agentmain方法

instrument agent的ClassFileLoadHook回撥實現

不管是啟動時還是執行時載入的instrument agent都關注著同一個jvmti事件---ClassFileLoadHook,這個事件是在讀取位元組碼檔案之後回撥時用的,這樣可以對原來的位元組碼做修改,那這裡面究竟是怎樣實現的呢?

void JNICALL
eventHandlerClassFileLoadHook(  jvmtiEnv *              jvmtienv,
                                JNIEnv *                jnienv,
                                jclass                  class_being_redefined,
                                jobject                 loader,
                                const char*             name,
                                jobject                 protectionDomain,
                                jint                    class_data_len,
                                const unsigned char*    class_data,
                                jint*                   new_class_data_len,
                                unsigned char**         new_class_data) {
    JPLISEnvironment * environment  = NULL;

    environment = getJPLISEnvironment(jvmtienv);

    /* if something is internally inconsistent (no agent), just silently return without touching the buffer */
    if ( environment != NULL ) {
        jthrowable outstandingException = preserveThrowable(jnienv);
        transformClassFile( environment->mAgent,
                            jnienv,
                            loader,
                            name,
                            class_being_redefined,
                            protectionDomain,
                            class_data_len,
                            class_data,
                            new_class_data_len,
                            new_class_data,
                            environment->mIsRetransformer);
        restoreThrowable(jnienv, outstandingException);
    }
}

先根據jvmtiEnv取得對應的JPLISEnvironment,因為上面我已經說到其實有兩個JPLISEnvironment(並且有兩個jvmtiEnv),其中一個專門做retransform的,而另外一個用來做其他的事情,根據不同的用途我們在註冊具體的ClassFileTransformer的時候也是分開的,對於作為retransform用的ClassFileTransformer我們會註冊到一個單獨的TransformerManager裡。

接著呼叫transformClassFile方法,由於函式實現比較長,我這裡就不貼程式碼了,大致意思就是呼叫InstrumentationImpl物件的transform方法,根據最後那個引數來決定選哪個TransformerManager裡的ClassFileTransformer物件們做transform操作。

 private byte[]
    transform(  ClassLoader         loader,
                String              classname,
                Class               classBeingRedefined,
                ProtectionDomain    protectionDomain,
                byte[]              classfileBuffer,
                boolean             isRetransformer) {
        TransformerManager mgr = isRetransformer?
                                        mRetransfomableTransformerManager :
                                        mTransformerManager;
        if (mgr == null) {
            return null; // no manager, no transform
        } else {
            return mgr.transform(   loader,
                                    classname,
                                    classBeingRedefined,
                                    protectionDomain,
                                    classfileBuffer);
        }
    }

  public byte[]
    transform(  ClassLoader         loader,
                String              classname,
                Class               classBeingRedefined,
                ProtectionDomain    protectionDomain,
                byte[]              classfileBuffer) {
        boolean someoneTouchedTheBytecode = false;

        TransformerInfo[]  transformerList = getSnapshotTransformerList();

        byte[]  bufferToUse = classfileBuffer;

        // order matters, gotta run 'em in the order they were added
        for ( int x = 0; x < transformerList.length; x++ ) {
            TransformerInfo         transformerInfo = transformerList[x];
            ClassFileTransformer    transformer = transformerInfo.transformer();
            byte[]                  transformedBytes = null;

            try {
                transformedBytes = transformer.transform(   loader,
                                                            classname,
                                                            classBeingRedefined,
                                                            protectionDomain,
                                                            bufferToUse);
            }
            catch (Throwable t) {
                // don't let any one transformer mess it up for the others.
                // This is where we need to put some logging. What should go here? FIXME
            }

            if ( transformedBytes != null ) {
                someoneTouchedTheBytecode = true;
                bufferToUse = transformedBytes;
            }
        }

        // if someone modified it, return the modified buffer.
        // otherwise return null to mean "no transforms occurred"
        byte [] result;
        if ( someoneTouchedTheBytecode ) {
            result = bufferToUse;
        }
        else {
            result = null;
        }

        return result;
    }   

以上是最終調到的java程式碼,可以看到已經呼叫到我們自己編寫的javaagent程式碼裡了,我們一般是實現一個ClassFileTransformer類,然後建立一個物件註冊了對應的TransformerManager裡。

Class Transform的實現

這裡說的class transform其實是狹義的,主要是針對第一次類檔案載入的時候就要求被transform的場景,在載入類檔案的時候發出ClassFileLoad的事件,然後交給instrumenat agent來呼叫javaagent裡註冊的ClassFileTransformer實現位元組碼的修改。

Class Redefine的實現

類重新定義,這是Instrumentation提供的基礎功能之一,主要用在已經被載入過的類上,想對其進行修改,要做這件事,我們必須要知道兩個東西,一個是要修改哪個類,另外一個是那個類你想修改成怎樣的結構,有了這兩資訊之後於是你就可以通過InstrumentationImpl的下面的redefineClasses方法去操作了:

public void
    redefineClasses(ClassDefinition[]   definitions)
            throws  ClassNotFoundException {
        if (!isRedefineClassesSupported()) {
            throw new UnsupportedOperationException("redefineClasses is not supported in this environment");
        }
        if (definitions == null) {
            throw new NullPointerException("null passed as 'definitions' in redefineClasses");
        }
        for (int i = 0; i < definitions.length; ++i) {
            if (definitions[i] == null) {
                throw new NullPointerException("element of 'definitions' is null in redefineClasses");
            }
        }
        if (definitions.length == 0) {
            return; // short-circuit if there are no changes requested
        }

        redefineClasses0(mNativeAgent, definitions);
    }

在JVM裡對應的實現是建立一個VM_RedefineClassesVM_Operation,注意執行它的時候會stop the world的:

jvmtiError
JvmtiEnv::RedefineClasses(jint class_count, const jvmtiClassDefinition* class_definitions) {
//TODO: add locking
  VM_RedefineClasses op(class_count, class_definitions, jvmti_class_load_kind_redefine);
  VMThread::execute(&op);
  return (op.check_error());
} /* end RedefineClasses */

這個過程我儘量用語言來描述清楚,不詳細貼程式碼了,因為程式碼量實在有點大:

  • 挨個遍歷要批量重定義的jvmtiClassDefinition
  • 然後讀取新的位元組碼,如果有關注ClassFileLoadHook事件的,還會走對應的transform來對新的位元組碼再做修改
  • 位元組碼解析好,建立一個klassOop物件
  • 對比新老類,並要求如下:
    • 父類是同一個
    • 實現的介面數也要相同,並且是相同的介面
    • 類訪問符必須一致
    • 欄位數和欄位名要一致
    • 新增或刪除的方法必須是private static/final的
    • 可以修改方法
  • 對新類做位元組碼校驗
  • 合併新老類的常量池
  • 如果老類上有斷點,那都清除掉
  • 對老類做jit去優化
  • 對新老方法匹配的方法的jmethodid做更新,將老的jmethodId更新到新的method上
  • 新類的常量池的holer指向老的類
  • 將新類和老類的一些屬性做交換,比如常量池,methods,內部類
  • 初始化新的vtable和itable
  • 交換annotation的method,field,paramenter
  • 遍歷所有當前類的子類,修改他們的vtable及itable

上面是基本的過程,總的來說就是隻更新了類裡內容,相當於只更新了指標指向的內容,並沒有更新指標,避免了遍歷大量已有類物件對它們進行更新帶來的開銷。

Class Retransform的實現

retransform class可以簡單理解為回滾操作,具體回滾到哪個版本,這個需要看情況而定,下面不管那種情況都有一個前提,那就是javaagent已經要求要有retransform的能力了:

  • 如果類是在第一次載入的的時候就做了transform,那麼做retransform的時候會將程式碼回滾到transform之後的程式碼
  • 如果類是在第一次載入的的時候沒有任何變化,那麼做retransform的時候會將程式碼回滾到最原始的類檔案裡的位元組碼
  • 如果類已經被載入了,期間類可能做過多次redefine(比如被另外一個agent做過),但是接下來載入一個新的agent要求有retransform的能力了,然後對類做redefine的動作,那麼retransform的時候會將程式碼回滾到上一個agent最後一次做redefine後的位元組碼

我們從InstrumentationImpl的retransformClasses方法引數看猜到應該是做回滾操作,因為我們只指定了class

    public void
    retransformClasses(Class<?>[] classes) {
        if (!isRetransformClassesSupported()) {
            throw new UnsupportedOperationException(
              "retransformClasses is not supported in this environment");
        }
        retransformClasses0(mNativeAgent, classes);
    }

不過retransform的實現其實也是通過redefine的功能來實現,在類載入的時候有比較小的差別,主要體現在究竟會走哪些transform上,如果當前是做retransform的話,那將忽略那些註冊到正常的TransformerManager裡的ClassFileTransformer,而只會走專門為retransform而準備的TransformerManager的ClassFileTransformer,不然想象一下位元組碼又被無聲無息改成某個中間態了。

private:
  void post_all_envs() {
    if (_load_kind != jvmti_class_load_kind_retransform) {
      // for class load and redefine,
      // call the non-retransformable agents
      JvmtiEnvIterator it;
      for (JvmtiEnv* env = it.first(); env != NULL; env = it.next(env)) {
        if (!env->is_retransformable() && env->is_enabled(JVMTI_EVENT_CLASS_FILE_LOAD_HOOK)) {
          // non-retransformable agents cannot retransform back,
          // so no need to cache the original class file bytes
          post_to_env(env, false);
        }
      }
    }
    JvmtiEnvIterator it;
    for (JvmtiEnv* env = it.first(); env != NULL; env = it.next(env)) {
      // retransformable agents get all events
      if (env->is_retransformable() && env->is_enabled(JVMTI_EVENT_CLASS_FILE_LOAD_HOOK)) {
        // retransformable agents need to cache the original class file
        // bytes if changes are made via the ClassFileLoadHook
        post_to_env(env, true);
      }
    }
  }
附錄 
// Jagent.cpp : 定義 DLL 應用程式的匯出函式。
// 
//Alt+F8


#include "stdafx.h"


#define MAX_TOKEN_LENGTH        16
#define MAX_THREAD_NAME_LENGTH  512
#define MAX_METHOD_NAME_LENGTH  1024


static jvmtiEnv *jvmti = NULL;
static jvmtiCapabilities capa;


/* Global agent data structure */


typedef struct {
/* JVMTI Environment */
jvmtiEnv      *jvmti;
jboolean       vm_is_started;
/* Data access Lock */
jrawMonitorID  lock;
} GlobalAgentData;


static GlobalAgentData *gdata;




static jlong combined_size;
static int num_class_refs;
static int num_field_refs;
static int num_array_refs;
static int num_classloader_refs;
static int num_signer_refs;
static int num_protection_domain_refs;
static int num_interface_refs; 
static int num_static_field_refs;
static int num_constant_pool_refs;




/* Every JVMTI interface returns an error code, which should be checked
*   to avoid any cascading errors down the line.
*   The interface GetErrorName() returns the actual enumeration constant
*   name, making the error messages much easier to understand.
*/
static void check_jvmti_error(jvmtiEnv *jvmti, jvmtiError errnum, const char *str)
{
if ( errnum != JVMTI_ERROR_NONE ) {
char       *errnum_str;


errnum_str = NULL;
(void)(*jvmti).GetErrorName(errnum, &errnum_str);


printf("ERROR: JVMTI: %d(%s): %s\n", errnum, (errnum_str==NULL?"Unknown":errnum_str), (str==NULL?"":str));
}
}


/* Enter a critical section by doing a JVMTI Raw Monitor Enter */
static void enter_critical_section(jvmtiEnv *jvmti)
{
jvmtiError error;


error = (*jvmti).RawMonitorEnter(gdata->lock);
check_jvmti_error(jvmti, error, "Cannot enter with raw monitor");
}


/* Exit a critical section by doing a JVMTI Raw Monitor Exit */
static void exit_critical_section(jvmtiEnv *jvmti)
{
jvmtiError error;


error = (*jvmti).RawMonitorExit(gdata->lock);
check_jvmti_error(jvmti, error, "Cannot exit with raw monitor");
}


void describe(jvmtiError err) {
jvmtiError err0;
char *descr;
err0 = (*jvmti).GetErrorName( err, &descr);
if (err0 == JVMTI_ERROR_NONE) {
printf(descr);
} else {
printf("error [%d]", err);
}
}


// Exception callback
static void JNICALL callbackException(jvmtiEnv *jvmti_env, JNIEnv* env, jthread thr, jmethodID method,
jlocation location, jobject exception, jmethodID catch_method, jlocation catch_location) 
{
enter_critical_section(jvmti); {


jvmtiError err, err1, err2, error;
jvmtiThreadInfo info, info1;
jvmtiThreadGroupInfo groupInfo;
jint num_monitors;
jobject *arr_monitors;


jvmtiFrameInfo frames[5];
jint count;
jint flag = 0;
jint thr_st_ptr;
jint thr_count;
jthread *thr_ptr;


jvmtiError err3;
char *name;
char *sig;
char *gsig;


err3  = (*jvmti).GetMethodName(method, &name, &sig, &gsig);
if (err3  != JVMTI_ERROR_NONE) {
printf("GetMethodName:%d\n", err);
return;
}


printf("Got Exception from Method:%s%s\n", name, sig);


err = (*jvmti).GetThreadInfo( thr, &info);
if (err != JVMTI_ERROR_NONE) {
printf("(GetThreadInfo) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, err);
describe(err);
jvmtiPhase phase;
jvmtiError phaseStat;
phaseStat = (*jvmti).GetPhase(&phase);
printf("    current phase is %d\n", phase);
printf("\n");


}




if (err == JVMTI_ERROR_NONE) {
err1 = (*jvmti).GetThreadGroupInfo(info.thread_group, &groupInfo);
if (err1 != JVMTI_ERROR_NONE)
{
printf("(GetThreadGroupInfo) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, err);
describe(err);
printf("\n");
}
}


if ((err == JVMTI_ERROR_NONE ) && (err1 == JVMTI_ERROR_NONE ) )
{
printf("Current Thread is : %s and it belongs to Thread Group :  %s\n", info.name, groupInfo.name);
}




err = (*jvmti).GetOwnedMonitorInfo(thr, &num_monitors, &arr_monitors);
if (err != JVMTI_ERROR_NONE) {
printf("(GetThreadInfo) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, err);
describe(err);
printf("\n");


}


printf("Number of Monitors Owned by this thread : %d\n", num_monitors);


/* Get Thread Status */
err = (*jvmti).GetThreadState( thr, &thr_st_ptr);
if (err != JVMTI_ERROR_NONE) {
printf("(GetThreadInfo) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, err);
describe(err);
printf("\n");


}


if (err == JVMTI_ERROR_NONE) {
printf("Thread Status\n");
printf("==============\n");
if  ( thr_st_ptr & JVMTI_THREAD_STATE_ALIVE) {
printf("Thread %s is Alive\n", info.name);
flag = 1;
}


if  ( thr_st_ptr & JVMTI_THREAD_STATE_TERMINATED) {


printf("Thread %s has been Terminated\n", info.name);
flag = 1;
}


if ( thr_st_ptr & JVMTI_THREAD_STATE_RUNNABLE ) {


printf("Thread %s is Runnable\n", info.name);
flag = 1;
}


if ( thr_st_ptr & JVMTI_THREAD_STATE_WAITING ) {
printf("Thread %s waiting\n", info.name);
flag = 1;
}


if ( thr_st_ptr & JVMTI_THREAD_STATE_WAITING_INDEFINITELY ) {
printf("Thread %s waiting indefinitely\n", info.name);
flag = 1;
}


if ( thr_st_ptr & JVMTI_THREAD_STATE_WAITING_WITH_TIMEOUT ) {    
printf("Thread %s waiting with Timeout\n", info.name);
flag = 1;
}


if ( thr_st_ptr & JVMTI_THREAD_STATE_SLEEPING ) {
printf("Thread %s Sleeping \n", info.name);
flag = 1;
}


/**
if ( thr_st_ptr & JVMTI_THREAD_STATE_WAITING_FOR_NOTIFICATION ) {
printf("Thread %s Waiting for Notification \n", info.name);
flag = 1;
}
**/


if ( thr_st_ptr & JVMTI_THREAD_STATE_IN_OBJECT_WAIT ) {
printf("Thread %s is in Object Wait \n", info.name);
flag = 1;
}
if ( thr_st_ptr & JVMTI_THREAD_STATE_PARKED ) {
printf("Thread %s is Parked \n", info.name);
flag = 1;
}
if ( thr_st_ptr & JVMTI_THREAD_STATE_BLOCKED_ON_MONITOR_ENTER ) { 
printf("Thread %s is blocked on monitor enter \n", info.name);
flag = 1;
}
if ( thr_st_ptr & JVMTI_THREAD_STATE_SUSPENDED ) { 
printf("Thread %s is Suspended \n", info.name);
flag = 1;
}
if ( thr_st_ptr & JVMTI_THREAD_STATE_INTERRUPTED ) {
printf("Thread %s is Interrupted \n", info.name);
flag = 1;
}
if ( thr_st_ptr & JVMTI_THREAD_STATE_IN_NATIVE ) {


printf("Thread %s is in Native \n", info.name);
flag = 1;
}
if ( flag != 1 )  {
printf("Illegal value  %d for Thread State\n", thr_st_ptr);
}


}


/* Get All Threads */
err = (*jvmti).GetAllThreads( &thr_count, &thr_ptr);
if (err != JVMTI_ERROR_NONE) {
printf("(GetThreadInfo) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, err);
describe(err);
printf("\n");


}
if (err == JVMTI_ERROR_NONE && thr_count >= 1) {
int i = 0;
printf("Thread Count: %d\n", thr_count);


for ( i=0; i < thr_count; i++) {


/* Make sure the stack variables are garbage free */
(void)memset(&info1,0, sizeof(info1));


err1 = (*jvmti).GetThreadInfo(thr_ptr[i], &info1);
if (err1 != JVMTI_ERROR_NONE) {
printf("(GetThreadInfo) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, err1);
describe(err1);
printf("\n");
}


printf("Running Thread#%d: %s, Priority: %d, context class loader:%s\n",
i+1,info1.name, info1.priority,(info1.context_class_loader == NULL ? ": NULL" : "Not Null"));


/* Every string allocated by JVMTI needs to be freed */


err2 = (*jvmti).Deallocate((unsigned char *)info1.name);
if (err2 != JVMTI_ERROR_NONE) {
printf("(GetThreadInfo) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, err2);
describe(err2);
printf("\n");
}
}
}




/* Get Stack Trace */
err = (*jvmti).GetStackTrace( thr, 0, 5, frames, &count);


if (err != JVMTI_ERROR_NONE) {
printf("(GetThreadInfo) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, err);
describe(err);
printf("\n");


}
printf("Number of records filled: %d\n", count);
if (err == JVMTI_ERROR_NONE && count >=1) {


char *methodName;
methodName = "yet_to_call()";
char *declaringClassName;
jclass declaring_class;


int i=0;


printf("Exception Stack Trace\n");
printf("=====================\n");
printf("Stack Trace Depth: %d\n", count); 


for ( i=0; i < count; i++) {
err = (*jvmti).GetMethodName( frames[i].method, &methodName, NULL, NULL);
if (err == JVMTI_ERROR_NONE) {


err = (*jvmti).GetMethodDeclaringClass( frames[i].method, &declaring_class);
err = (*jvmti).GetClassSignature( declaring_class, &declaringClassName, NULL);
if (err == JVMTI_ERROR_NONE) {
printf("at method %s() in class %s\n", methodName, declaringClassName);
}
}


}
printf("\n");


err = (*jvmti).Deallocate((unsigned char *)methodName);
err = (*jvmti).Deallocate((unsigned char *)declaringClassName);
}
} exit_critical_section(jvmti);


}
// VM Death callback
static void JNICALL callbackVMDeath(jvmtiEnv *jvmti_env, JNIEnv* jni_env)
{
enter_critical_section(jvmti); {


printf("Got VM Death event\n");


} exit_critical_section(jvmti);


}




/* Get a name for a jthread */
static void get_thread_name(jvmtiEnv *jvmti, jthread thread, char *tname, int maxlen)
{
jvmtiThreadInfo info;
jvmtiError      error;


/* Make sure the stack variables are garbage free */
(void)memset(&info,0, sizeof(info));


/* Assume the name is unknown for now */
(void)strcpy(tname, "Unknown");


/* Get the thread information, which includes the name */
error = (*jvmti).GetThreadInfo( thread, &info);
check_jvmti_error(jvmti, error, "Cannot get thread info");


/* The thread might not have a name, be careful here. */
if ( info.name != NULL ) {
int len;


/* Copy the thread name into tname if it will fit */
len = (int)strlen(info.name);
if ( len < maxlen ) {
(void)strcpy(tname, info.name);
}


/* Every string allocated by JVMTI needs to be freed */
error = (*jvmti).Deallocate( (unsigned char *)info.name);
if (error != JVMTI_ERROR_NONE) {
printf("(get_thread_name) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, error);
describe(error);
printf("\n");
}


}
}




// VM init callback
static void JNICALL callbackVMInit(jvmtiEnv *jvmti_env, JNIEnv* jni_env, jthread thread)
{
enter_critical_section(jvmti); {


char  tname[MAX_THREAD_NAME_LENGTH];
static jvmtiEvent events[] = { JVMTI_EVENT_THREAD_START, JVMTI_EVENT_THREAD_END }; 
int        i;
jvmtiFrameInfo frames[5];
jvmtiError err, err1;
jvmtiError error;
jint count;


/* The VM has started. */
printf("Got VM init event\n");
get_thread_name(jvmti_env , thread, tname, sizeof(tname));
printf("callbackVMInit:  %s thread\n", tname);




error = (*jvmti).SetEventNotificationMode(JVMTI_ENABLE, JVMTI_EVENT_EXCEPTION, (jthread)NULL);
check_jvmti_error(jvmti_env, error, "Cannot set event notification");






} exit_critical_section(jvmti);


}




/* JVMTI callback function. */
static jvmtiIterationControl JNICALL
reference_object(jvmtiObjectReferenceKind reference_kind,
jlong class_tag, jlong size, jlong* tag_ptr,
jlong referrer_tag, jint referrer_index, void *user_data)
{


combined_size = combined_size + size;


switch (reference_kind) {


case JVMTI_REFERENCE_CLASS:
num_class_refs = num_class_refs + 1;
break;
case JVMTI_REFERENCE_FIELD:
num_field_refs = num_field_refs + 1;
break;
case JVMTI_REFERENCE_ARRAY_ELEMENT:
num_array_refs = num_array_refs + 1;
break;
case JVMTI_REFERENCE_CLASS_LOADER:
num_classloader_refs = num_classloader_refs + 1;
break;
case JVMTI_REFERENCE_SIGNERS:
num_signer_refs = num_signer_refs + 1;
break;
case JVMTI_REFERENCE_PROTECTION_DOMAIN:
num_protection_domain_refs = num_protection_domain_refs + 1;
break;
case JVMTI_REFERENCE_INTERFACE:
num_interface_refs = num_interface_refs + 1;
break;
case JVMTI_REFERENCE_STATIC_FIELD:
num_static_field_refs = num_static_field_refs + 1;
break;
case JVMTI_REFERENCE_CONSTANT_POOL:
num_constant_pool_refs = num_constant_pool_refs + 1;
break;
default:
break;
}




return JVMTI_ITERATION_CONTINUE;
}




static void JNICALL callbackVMObjectAlloc(jvmtiEnv *jvmti_env, JNIEnv* jni_env,
jthread thread, jobject object, jclass object_klass, jlong size) {




char *methodName;
char *className;
char *declaringClassName;
jclass declaring_class;
jvmtiError err;




if (size > 50) {


err = (*jvmti).GetClassSignature(object_klass, &className, NULL);


if (className != NULL) {
printf("\ntype %s object allocated with size %d\n", className, (jint)size);
}


//print stack trace
jvmtiFrameInfo frames[5];
jint count;
int i;


err = (*jvmti).GetStackTrace(NULL, 0, 5, (jvmtiFrameInfo*)&frames, &count);
if (err == JVMTI_ERROR_NONE && count >= 1) {


for (i = 0; i < count; i++) {
err = (*jvmti).GetMethodName(frames[i].method, &methodName, NULL, NULL);
if (err == JVMTI_ERROR_NONE) {


err = (*jvmti).GetMethodDeclaringClass( frames[i].method, &declaring_class);
err = (*jvmti).GetClassSignature( declaring_class, &declaringClassName, NULL); 
if (err == JVMTI_ERROR_NONE) {
printf("at method %s in class %s\n", methodName, declaringClassName);
}
}
}
}


//reset counters
combined_size  = 0;
num_class_refs = 0;
num_field_refs = 0;
num_array_refs = 0;
num_classloader_refs = 0;
num_signer_refs = 0;
num_protection_domain_refs = 0;
num_interface_refs = 0;
num_static_field_refs = 0;
num_constant_pool_refs = 0;


err = (*jvmti).IterateOverObjectsReachableFromObject(object, &reference_object, NULL);
if ( err != JVMTI_ERROR_NONE ) {
printf("Cannot iterate over reachable objects\n");
}


printf("\nThis object has references to objects of combined size %d\n", (jint)combined_size);
printf("This includes %d classes, %d fields, %d arrays, %d classloaders, %d signers arrays,\n", num_class_refs, num_field_refs, num_array_refs, num_classloader_refs, num_signer_refs);
printf("%d protection domains, %d interfaces, %d static fields, and %d constant pools.\n\n", num_protection_domain_refs, num_interface_refs, num_static_field_refs, num_constant_pool_refs);


err = (*jvmti).Deallocate((unsigned char *)className);
err = (*jvmti).Deallocate((unsigned char *)methodName);
err = (*jvmti).Deallocate( (unsigned char *)declaringClassName);
}
}


jobject getLocalValue(JNIEnv *env,jvmtiEnv *jvmti_env, jthread thread, jint depth,
jvmtiLocalVariableEntry *table, int index) {
jobject result;
jint iVal;
jfloat fVal;
jdouble dVal;
jlong jVal;
jvmtiError tiErr;
jclass reflectClass;
jmethodID valueOf;
// Retreive
switch (table[index].signature[0]) {
case '[': // Array
case 'L': // Object
tiErr = (*jvmti_env).GetLocalObject( thread,depth, table[index].slot,&result);
break;
case 'J': // long
tiErr = (*jvmti_env).GetLocalLong( thread,depth, table[index].slot,&jVal);
break;
case 'F': // float
tiErr = (*jvmti_env).GetLocalFloat( thread,depth, table[index].slot,&fVal);
break;
case 'D': // double
tiErr = (*jvmti_env).GetLocalDouble(thread,depth, table[index].slot,&dVal);
break;
// Integer types
case 'I': // int
case 'S': // short
case 'C': // char
case 'B': // byte
case 'Z': // boolean
tiErr = (*jvmti_env).GetLocalInt(thread,depth, table[index].slot,&iVal);
break;
// error type
default:
return NULL;
}
if (tiErr != JVMTI_ERROR_NONE) {
return NULL;
}
// Box primitives
switch (table[index].signature[0]) {
case 'J': // long
reflectClass = (*env).FindClass("java/lang/Long");
valueOf = (*env).GetStaticMethodID(reflectClass, "valueOf","(J)Ljava/lang/Long;");
result = (*env).CallStaticObjectMethod( reflectClass, valueOf, jVal);
break;
case 'F': // float
reflectClass = (*env).FindClass( "java/lang/Float");
valueOf = (*env).GetStaticMethodID( reflectClass, "valueOf",
"(F)Ljava/lang/Float;");
result = (*env).CallStaticObjectMethod( reflectClass, valueOf, fVal);
break;
case 'D': // double
reflectClass = (*env).FindClass("java/lang/Double");
valueOf = (*env).GetStaticMethodID( reflectClass, "valueOf","(D)Ljava/lang/Double;");
result = (*env).CallStaticObjectMethod( reflectClass, valueOf, dVal);
break;
// INTEGER TYPES
case 'I': // int
reflectClass = (*env).FindClass( "java/lang/Integer");
valueOf = (*env).GetStaticMethodID( reflectClass, "valueOf",
"(I)Ljava/lang/Integer;");
result = (*env).CallStaticObjectMethod( reflectClass, valueOf, iVal);
break;
case 'S': // short
reflectClass = (*env).FindClass( "java/lang/Short");
valueOf = (*env).GetStaticMethodID( reflectClass, "valueOf","(S)Ljava/lang/Short;");
result = (*env).CallStaticObjectMethod( reflectClass, valueOf, iVal);
break;
case 'C': // char
reflectClass = (*env).FindClass( "java/lang/Character");
valueOf = (*env).GetStaticMethodID( reflectClass, "valueOf","(C)Ljava/lang/Character;");
result = (*env).CallStaticObjectMethod( reflectClass, valueOf, iVal);
break;
case 'B': // byte
reflectClass = (*env).FindClass( "java/lang/Byte");
valueOf = (*env).GetStaticMethodID( reflectClass, "valueOf","(B)Ljava/lang/Byte;");
result = (*env).CallStaticObjectMethod( reflectClass, valueOf, iVal);
break;
case 'Z': // boolean
reflectClass = (*env).FindClass( "java/lang/Boolean");
valueOf = (*env).GetStaticMethodID( reflectClass, "valueOf","(Z)Ljava/lang/Boolean;");
result = (*env).CallStaticObjectMethod( reflectClass, valueOf, iVal);
break;
default:  // jobject
break;
}
return result;
}


static void JNICALL callbackMethodEntry(jvmtiEnv *jvmti_env,JNIEnv* jni_env,jthread thread,jmethodID method)
{
unsigned char *methodName;
unsigned char *className;
unsigned char *declaringClassName;
jclass declaring_class;
jvmtiError err;
jvmtiThreadInfo info_ptr;


jint entry_count_ptr;
jvmtiLocalVariableEntry* table_ptr;
jint max_ptr;




jvmtiFrameInfo frames[2];
jint count;
int i;
//for get local variable value;
jobject objV =NULL;
jobject local;
jclass localClass;
jstring name;
jstring sig;
jstring gensig;




err = (*jvmti).GetStackTrace(NULL, 0, 1, (jvmtiFrameInfo*)&frames, &count);




if (