1. 程式人生 > >[Android]Handler執行機制

[Android]Handler執行機制

本文轉自 : https://blog.csdn.net/u012827296/article/details/51236614

Handler的作用:

當我們需要在子執行緒處理耗時的操作(例如訪問網路,資料庫的操作),而當耗時的操作完成後,需要更新UI,這就需要使用Handler來處理,因為子執行緒不能做更新UI的操作。Handler能幫我們很容易的把任務(在子執行緒處理)切換回它所在的執行緒。簡單理解,Handler就是解決執行緒和執行緒之間的通訊的。

Handler的使用: 

使用的handler的兩種形式: 

  1. 在主執行緒使用handler;
  2. 在子執行緒使用handler; 

在主執行緒使用handler: 

public class TestHandlerActivity extends AppCompatActivity {

private static final String TAG = "TestHandlerActivity";

private Handler mHandler = new Handler(){
    @Override
    public void handleMessage(Message msg) {
        super.handleMessage(msg);
        //獲得剛才傳送的Message物件,然後在這裡進行UI操作
        Log.e(TAG,"------------> msg.what = " + msg.what);
    }
};

@Override
protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_handler_test);
    initData();
}

private void initData() {
    //開啟一個執行緒模擬處理耗時的操作
    new Thread(new Runnable() {
        @Override
        public void run() {

            SystemClock.sleep(2000);
            //通過Handler傳送一個訊息切換回主執行緒(mHandler所在的執行緒)
            mHandler.sendEmptyMessage(0);
        }
    }).start();
}   

è¿éåå¾çæè¿°

在主執行緒使用handler很簡單,只需在主執行緒建立一個handler物件,在子執行緒通過在主執行緒建立的handler物件傳送Message,在handleMessage()方法中接受這個Message物件進行處理。通過handler很容易的從子執行緒切換回主執行緒了。

那麼來看看在子執行緒中使用是否也是如此?

public class TestHandlerActivity extends AppCompatActivity {

private static final String TAG = "TestHandlerActivity";
//主執行緒中的handler
private Handler mHandler = new Handler(){
    @Override
    public void handleMessage(Message msg) {
        super.handleMessage(msg);
        //獲得剛才傳送的Message物件,然後在這裡進行UI操作
        Log.e(TAG,"------------> msg.what = " + msg.what);
    }
};
//子執行緒中的handler
private Handler mHandlerThread = null;

@Override
protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_handler_test);
    initData();
}

private void initData() {

    //開啟一個執行緒模擬處理耗時的操作
    new Thread(new Runnable() {
        @Override
        public void run() {

            SystemClock.sleep(2000);
            //通過Handler傳送一個訊息切換回主執行緒(mHandler所在的執行緒)
            mHandler.sendEmptyMessage(0);
            //在子執行緒中建立Handler
            mHandlerThread = new Handler(){
                @Override
                public void handleMessage(Message msg) {
                    super.handleMessage(msg);
                    Log.e("sub thread","---------> msg.what = " + msg.what);
                }
            };

            mHandlerThread.sendEmptyMessage(1);
        }
    }).start();
}

 è¿éåå¾çæè¿°

程式崩潰了。報的錯誤是沒有在子執行緒呼叫Looper.prepare()的方法。而為什麼在主執行緒中使用不會報錯?通過原始碼的分析可以解析這個問題。

在子執行緒中正確的使用Handler應該是這樣的:

public class TestHandlerActivity extends AppCompatActivity {

private static final String TAG = "TestHandlerActivity";

//主執行緒的Handler
private Handler mHandler = new Handler(){
    @Override
    public void handleMessage(Message msg) {
        super.handleMessage(msg);
        //獲得剛才傳送的Message物件,然後在這裡進行UI操作
        Log.e(TAG,"------------> msg.what = " + msg.what);
    }
};
//子執行緒中的Handler
private Handler mHandlerThread = null;

@Override
protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_handler_test);
    initData();
}

private void initData() {
    //開啟一個執行緒模擬處理耗時的操作
    new Thread(new Runnable() {
        @Override
        public void run() {

            SystemClock.sleep(2000);
            //通過Handler傳送一個訊息切換回主執行緒(mHandler所在的執行緒)
            mHandler.sendEmptyMessage(0);

            //呼叫Looper.prepare()方法
            Looper.prepare();

            mHandlerThread = new Handler(){
                @Override
                public void handleMessage(Message msg) {
                    super.handleMessage(msg);
                    Log.e("sub thread","---------> msg.what = " + msg.what);
                }
            };

            mHandlerThread.sendEmptyMessage(1);

            //呼叫Looper.loop()方法
            Looper.loop();
        }
    }).start();
}

可以看到,通過呼叫Looper.prepare()執行正常,handleMessage方法中就可以接收到傳送的Message。

至於為什麼要呼叫這個方法呢?去看看原始碼。 

Handler原始碼分析 

Handler的訊息處理主要有五個部分組成,MessageHandlerMessageQueueLooperThreadLocal。首先簡要的瞭解這些物件的概念。

Message:Message是線上程之間傳遞的訊息,它可以在內部攜帶少量的資料,用於執行緒之間交換資料。Message有四個常用的欄位,what欄位,arg1欄位,arg2欄位,obj欄位。what,arg1,arg2可以攜帶整型資料,obj可以攜帶object物件。

Handler:它主要用於傳送和處理訊息的,傳送訊息一般使用sendMessage()方法,還有其他的一系列sendXXX的方法,但最終都是呼叫了sendMessageAtTime方法,除了sendMessageAtFrontOfQueue()這個方法。

MessageQueue:MessageQueue是訊息佇列的意思,它主要用於存放所有通過Handler傳送的訊息,這部分的訊息會一直存在於訊息佇列中,等待被處理。每個執行緒中只會有一個MessageQueue物件。

Looper:每個執行緒通過Handler傳送的訊息都儲存在MessageQueue中,Looper通過呼叫loop()的方法,就會進入到一個無限迴圈當中,然後每當發現Message Queue中存在一條訊息,就會將它取出,並傳遞到Handler的handleMessage()方法中。每個執行緒中只會有一個Looper物件。

ThreadLocal:MessageQueue物件和Looper物件在每個執行緒中都只會有一個物件,怎麼能保證它只有一個物件,就通過ThreadLocal來儲存。Thread Local是一個執行緒內部的資料儲存類,通過它可以在指定執行緒中儲存資料,資料儲存以後,只有在指定執行緒中可以獲取到儲存到資料,對於其他執行緒來說則無法獲取到資料。

瞭解了這些基本概念後,我們深入原始碼來了解Handler的工作機制。

MessageQueue的工作原理

MessageQueue訊息佇列是通過一個單鏈表的資料結構來維護訊息列表的。下面主要看enqueueMessage方法和next()方法。如下:

boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }

    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w(TAG, e.getMessage(), e);
            msg.recycle();
            return false;
        }

        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr);
        }
    }
    return true;
}

可以看出,在這個方法裡主要是根據時間的順序向單鏈表中插入一條訊息。

next()方法。如下:

Message next() {
    // Return here if the message loop has already quit and been disposed.
    // This can happen if the application tries to restart a looper after quit
    // which is not supported.
    final long ptr = mPtr;
    if (ptr == 0) {
        return null;
    }

    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);

        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }

            // Process the quit message now that all pending messages have been handled.
            if (mQuitting) {
                dispose();
                return null;
            }

            // If first time idle, then get the number of idlers to run.
            // Idle handles only run if the queue is empty or if the first message
            // in the queue (possibly a barrier) is due to be handled in the future.
            if (pendingIdleHandlerCount < 0
                    && (mMessages == null || now < mMessages.when)) {
                pendingIdleHandlerCount = mIdleHandlers.size();
            }
            if (pendingIdleHandlerCount <= 0) {
                // No idle handlers to run.  Loop and wait some more.
                mBlocked = true;
                continue;
            }

            if (mPendingIdleHandlers == null) {
                mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
            }
            mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
        }

        // Run the idle handlers.
        // We only ever reach this code block during the first iteration.
        for (int i = 0; i < pendingIdleHandlerCount; i++) {
            final IdleHandler idler = mPendingIdleHandlers[i];
            mPendingIdleHandlers[i] = null; // release the reference to the handler

            boolean keep = false;
            try {
                keep = idler.queueIdle();
            } catch (Throwable t) {
                Log.wtf(TAG, "IdleHandler threw exception", t);
            }

            if (!keep) {
                synchronized (this) {
                    mIdleHandlers.remove(idler);
                }
            }
        }

        // Reset the idle handler count to 0 so we do not run them again.
        pendingIdleHandlerCount = 0;

        // While calling an idle handler, a new message could have been delivered
        // so go back and look again for a pending message without waiting.
        nextPollTimeoutMillis = 0;
    }
}

 在next方法是一個無限迴圈的方法,如果有訊息返回這條訊息並從連結串列中移除,而沒有訊息則一直阻塞在這裡。

Looper的工作原理

每個程式都有一個入口,而Android程式是基於java的,java的程式入口是靜態的main函式,因此Android程式的入口也應該為靜態的main函式,在android程式中這個靜態的main在ActivityThread類中。我們來看一下這個main方法,如下:

public static void main(String[] args) {
    SamplingProfilerIntegration.start();

    // CloseGuard defaults to true and can be quite spammy.  We
    // disable it here, but selectively enable it later (via
    // StrictMode) on debug builds, but using DropBox, not logs.
    CloseGuard.setEnabled(false);

    Environment.initForCurrentUser();

    // Set the reporter for event logging in libcore
    EventLogger.setReporter(new EventLoggingReporter());

    Security.addProvider(new AndroidKeyStoreProvider());

    // Make sure TrustedCertificateStore looks in the right place for CA certificates
    final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
    TrustedCertificateStore.setDefaultUserDirectory(configDir);

    Process.setArgV0("<pre-initialized>");
    //######
    Looper.prepareMainLooper();

    ActivityThread thread = new ActivityThread();
    thread.attach(false);

    if (sMainThreadHandler == null) {
        sMainThreadHandler = thread.getHandler();
    }

    if (false) {
        Looper.myLooper().setMessageLogging(new
                LogPrinter(Log.DEBUG, "ActivityThread"));
    }

    Looper.loop();

    throw new RuntimeException("Main thread loop unexpectedly exited");
}

在main方法中系統呼叫了 Looper.prepareMainLooper();來建立主執行緒的Looper以及MessageQueue,並通過Looper.loop()來開啟主執行緒的訊息迴圈。來看看Looper.prepareMainLooper()是怎麼創建出這兩個物件的。如下:

public static void prepareMainLooper() {
    prepare(false);
    synchronized (Looper.class) {
        if (sMainLooper != null) {
            throw new IllegalStateException("The main Looper has already been prepared.");
        }
        sMainLooper = myLooper();
    }
}

可以看到,在這個方法中呼叫了 prepare(false);方法和 myLooper();方法,我在進入這個兩個方法中,如下:

private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}

在這裡可以看出,sThreadLocal物件儲存了一個Looper物件,首先判斷是否已經存在Looper物件了,以防止被呼叫兩次。sThreadLocal物件是ThreadLocal型別,因此保證了每個執行緒中只有一個Looper物件。Looper物件是什麼建立的,我們進入看看,如下:

private Looper(boolean quitAllowed) {
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}

可以看出,這裡在Looper建構函式中創建出了一個MessageQueue物件和儲存了當前執行緒。從上面可以看出一個執行緒中只有一個Looper物件,而Message Queue物件是在Looper建構函式創建出來的,因此每一個執行緒也只會有一個MessageQueue物件。
對prepare方法還有一個過載的方法:如下

public static void prepare() {
    prepare(true);
}

prepare()僅僅是對prepare(boolean quitAllowed) 的封裝而已,在這裡就很好解釋了在主執行緒為什麼不用呼叫Looper.prepare()方法了。因為在主執行緒啟動的時候系統已經幫我們自動呼叫了Looper.prepare()方法。

在Looper.prepareMainLooper()方法中還呼叫了一個方法myLooper(),我們進去看看,如下:

/**
 * Return the Looper object associated with the current thread.  Returns
 * null if the calling thread is not associated with a Looper.
 */
public static Looper myLooper() {
    return sThreadLocal.get();
}

在呼叫prepare()方法中在當前執行緒儲存一個Looper物件sThreadLocal.set(new Looper(quitAllowed));my Looper()方法就是取出當前執行緒的Looper物件,儲存在sMainLooper引用中。

在main()方法中還呼叫了Looper.loop()方法,如下:

public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }

        msg.target.dispatchMessage(msg);

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycle();
    }
}

在這個方法裡,進入一個無限迴圈,不斷的從MessageQueue的next方法獲取訊息,而next方法是一個阻塞操作,當沒有訊息的時候一直在阻塞,當有訊息通過 msg.target.dispatchMessage(msg);這裡的msg.target其實就是傳送給這條訊息的Handler物件。

Handler的執行機制 

 看看Handler的構造方法。如下:

public Handler(Callback callback) {
    this(callback, false);
}

public Handler(Looper looper) {
    this(looper, null, false);
}

public Handler(Looper looper, Callback callback) {
    this(looper, callback, false);
}

我們去看看沒有Looper 物件的構造方法:

public Handler(Callback callback, boolean async) {
    if (FIND_POTENTIAL_LEAKS) {
        final Class<? extends Handler> klass = getClass();
        if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                (klass.getModifiers() & Modifier.STATIC) == 0) {
            Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                klass.getCanonicalName());
        }
    }

    mLooper = Looper.myLooper();
    if (mLooper == null) {
        throw new RuntimeException(
            "Can't create handler inside thread that has not called Looper.prepare()");
    }
    mQueue = mLooper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
}

可以看到,到looper物件為null,丟擲 “Can’t create handler inside thread that has not called Looper.prepare()”異常由這裡可以知道,當我們在子執行緒使用Handler的時候要手動呼叫Looper.prepare()建立一個Looper物件,之所以主執行緒不用,是系統啟動的時候幫我們自動呼叫了Looper.prepare()方法。

handler的工作主要包含傳送和接收過程。訊息的傳送主要通過post和send的一系列方法,而post的一系列方法是最終是通過send的一系列方法來實現的。而send的一系列方法最終是通過sendMessageAtTime方法來實現的,除了sendMessageAtFrontOfQueue()這個方法。去看看這些一系列send的方法,如下:

public final boolean sendMessage(Message msg)
{
    return sendMessageDelayed(msg, 0);
}

public final boolean sendEmptyMessage(int what)
{
    return sendEmptyMessageDelayed(what, 0);
}  

public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
    Message msg = Message.obtain();
    msg.what = what;
    return sendMessageAtTime(msg, uptimeMillis);
}

public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
    if (delayMillis < 0) {
        delayMillis = 0;
    }
    return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}

public final boolean sendMessageAtFrontOfQueue(Message msg) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
            this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, 0);
}

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}

可以看出,handler傳送一條訊息其實就是在訊息佇列插入一條訊息。在Looper的loop方法中,從Message Queue中取出訊息調msg.target.dispatchMessage(msg);這裡其實就是呼叫了Handler的dispatchMessage(msg)方法,進去看看,如下:

 /**
 * Handle system messages here.
 */
public void dispatchMessage(Message msg) {
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}

判斷msg.callback是否為空,不為空呼叫 handleCallback(msg);來處理訊息。其實callback是一個Runnable物件,就是Handler傳送post訊息傳過來的物件。

public final boolean post(Runnable r)
{
   return  sendMessageDelayed(getPostMessage(r), 0);
}

 public final boolean postAtTime(Runnable r, long uptimeMillis)
{
    return sendMessageAtTime(getPostMessage(r), uptimeMillis);
}

public final boolean postAtTime(Runnable r, Object token, long uptimeMillis)
{
    return sendMessageAtTime(getPostMessage(r, token), uptimeMillis);
}


public final boolean postDelayed(Runnable r, long delayMillis)
{
    return sendMessageDelayed(getPostMessage(r), delayMillis);
}


public final boolean postAtFrontOfQueue(Runnable r)
{
    return sendMessageAtFrontOfQueue(getPostMessage(r));
}

private static Message getPostMessage(Runnable r) {
    Message m = Message.obtain();
    m.callback = r;
    return m;
}

 進去handleCallback方法看看怎麼處理訊息的,如下:

private static void handleCallback(Message message) {
    message.callback.run();
}

可以看出,其實就是回撥Runnable物件的run方法。Activity的runOnUiThread,View的postDelayed方法也是同樣的原理,我們先看看runOnUiThread方法,如下:

public final void runOnUiThread(Runnable action) {
    if (Thread.currentThread() != mUiThread) {
        mHandler.post(action);
    } else {
        action.run();
    }
}

View的postDelayed方法。如下:

public boolean postDelayed(Runnable action, long delayMillis) {
    final AttachInfo attachInfo = mAttachInfo;
    if (attachInfo != null) {
        return attachInfo.mHandler.postDelayed(action, delayMillis);
    }
    // Assume that post will succeed later
    ViewRootImpl.getRunQueue().postDelayed(action, delayMillis);
    return true;
}

實質上都是在UI執行緒中執行了Runnable的run方法。

如果msg.callback是否為null,判斷mCallback是否為null?mCallback是一個介面,如下:

/**
 * Callback interface you can use when instantiating a Handler to avoid
 * having to implement your own subclass of Handler.
 *
 * @param msg A {@link android.os.Message Message} object
 * @return True if no further handling is desired
 */
public interface Callback {
    public boolean handleMessage(Message msg);
}

CallBack其實提供了另一種使用Handler的方式,可以派生子類重寫handleMessage()方法,也可以通過設定CallBack來實現。

我們梳理一下我們在主執行緒使用Handler的過程。

首先在主執行緒建立一個Handler物件 ,並重寫handleMessage()方法。然後當在子執行緒中需要進行更新UI的操作,我們就建立一個Message物件,並通過handler傳送這條訊息出去。之後這條訊息被加入到MessageQueue佇列中等待被處理,通過Looper物件會一直嘗試從Message Queue中取出待處理的訊息,最後分發回Handler的handler Message()方法中。

  1. 首先Looper.prepare()在本執行緒中儲存一個Looper例項,然後該例項中儲存一個MessageQueue物件;因為Looper.prepare()在一個執行緒中只能呼叫一次,所以MessageQueue在一個執行緒中只會存在一個。
  2. Looper.loop()會讓當前執行緒進入一個無限迴圈,不端從MessageQueue的例項中讀取訊息,然後回撥msg.target.dispatchMessage(msg)方法。
  3. Handler的構造方法,會首先得到當前執行緒中儲存的Looper例項,進而與Looper例項中的MessageQueue想關聯。
  4. Handler的sendMessage方法,會給msg的target賦值為handler自身,然後加入MessageQueue中。
  5. 構造Handler例項時,我們會重寫handleMessage方法,也就是msg.target.dispatchMessage(msg)最終呼叫的方法。

 

è¿éåå¾çæè¿°