1. 程式人生 > >CNN 中的BN(batch normalization)“批歸一化”原理

CNN 中的BN(batch normalization)“批歸一化”原理

在看 ladder network(https://arxiv.org/pdf/1507.02672v2.pdf) 時初次遇到batch normalization(BN). 文中說BN能加速收斂等好處,但是並不理解,然後就在網上搜了些關於BN的資料。

看了知乎上關於深度學習中 Batch Normalization為什麼效果好? 和CSDN上一個關於Batch Normalization 的學習筆記,總算對BN有一定的瞭解了。這裡只是總結一下BN的具體操作流程,對於BN更深層次的理解,為什麼要BN,BN是否真的有效也還在持續學習和實驗中。

BN就是在神經網路的訓練過程中對每層的輸入資料加一個標準化處理。
這裡寫圖片描述

傳統的神經網路,只是在將樣本xx進行標準化,還對每個隱藏層的輸入進行標準化。

這裡寫圖片描述

標準化後的xx了)

  1. s1s1

需要注意的是,上述的計算方法用於在訓練過程中。在測試時,所使用的μμ的值通常是在訓練的同時用移動平均法來計算的.

在看具體程式碼之前,先來看兩個求平均值函式的用法:

mean, variance = tf.nn.moments(x, axes, name=None, keep_dims=False)

這個函式的輸入引數x表示樣本,形如[batchsize, height, width, kernels]
axes表示在哪個維度上求解,是個list
函式輸出均值和方差

'''
batch = np.array(np.random.randint(1, 100, [10, 5]))開始這裡沒有定義資料型別,batch的dtype=int64,導致後面sess.run([mm,vv])時老報InvalidArgumentError錯誤,原因是tf.nn.moments中的計算要求引數是float的
'''
batch = np.array(np.random.randint(1, 100, [10, 5]),dtype=np.float64)
mm, vv=tf.nn.moments(batch,axes=[0])#按維度0求均值和方差
#mm, vv=tf.nn.moments(batch,axes=[0,1])求所有資料的平均值和方差
sess = tf.Session() print batch print sess.run([mm, vv])#一定要注意引數型別 sess.close()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

輸出結果:

[[ 53.   9.  67.  30.  69.]
 [ 79.  25.   7.  80.  16.]
 [ 77.  67.  60.  30.  85.]
 [ 45.  14.  92.  12.  67.]
 [ 32.  98.  70.  98.  48.]
 [ 45.  89.  73.  73.  80.]
 [ 35.  67.  21.  77.  63.]
 [ 24.  33.  56.  85.  17.]
 [ 88.  43.  58.  82.  59.]
 [ 53.  23.  34.   4.  33.]]
[array([ 53.1,  46.8,  53.8,  57.1,  53.7]), array([  421.09,   896.96,   598.36,  1056.69,   542.61])]
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

ema = tf.train.ExponentialMovingAverage(decay) 求滑動平均值需要提供一個衰減率。該衰減率用於控制模型更新的速度,ExponentialMovingAverage 對每一個(待更新訓練學習的)變數(variable)都會維護一個影子變數(shadow variable)。影子變數的初始值就是這個變數的初始值,

shadow_variable=decay×shadow_variable+(1−decay)×variable

由上述公式可知, decay 控制著模型更新的速度,越大越趨於穩定。實際運用中,decay 一般會設定為十分接近 1 的常數(0.99或0.999)。為了使得模型在訓練的初始階段更新得更快,ExponentialMovingAverage 還提供了 num_updates 引數來動態設定 decay 的大小:

decay=min{decay,1+num_updates10+num_updates}decay=min{decay,1+num_updates10+num_updates}

對於滑動平均值我是這樣理解的(也不知道對不對,如果有覺得錯了的地方希望能幫忙指正)

假設有一串時間序列 {a1,a2,a3,,at,at+1,,}{a1,a2,a3,⋯,at,at+1,⋯,}

import tensorflow as tf
graph=tf.Graph()
with graph.as_default():
    w = tf.Variable(dtype=tf.float32,initial_value=1.0)
    ema = tf.train.ExponentialMovingAverage(0.9)
    update = tf.assign_add(w, 1.0)

    with tf.control_dependencies([update]):
        ema_op = ema.apply([w])#返回一個op,這個op用來更新moving_average #這句和下面那句不能調換順序

    ema_val = ema.average(w)#此op用來返回當前的moving_average,這個引數不能是list

with tf.Session(graph=graph) as sess:
    sess.run(tf.initialize_all_variables())
    for i in range(3):
        print i
        print 'w_old=',sess.run(w)
        print sess.run(ema_op)
        print 'w_new=', sess.run(w)
        print sess.run(ema_val)
        print '**************'
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

輸出:

0
w_old= 1.0
None
w_new= 2.0#在執行ema_op時先執行了對w的更新
1.1  #0.9*1.0+0.1*2.0=1.1
**************
1
w_old= 2.0
None
w_new= 3.0
1.29  #0.9*1.1+0.1*3.0=1.29
**************
2
w_old= 3.0
None
w_new= 4.0
1.561  #0.9*1.29+0.1*4.0=1.561
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

關於加入了batch Normal的對mnist手寫數字分類的nn網路完整程式碼:

import tensorflow as tf
#import input_data
from tqdm import tqdm
import numpy as np
import math
from six.moves import cPickle as pickle
#資料預處理
pickle_file = '/home/sxl/tensor學習/My Udacity/notM/notMNISTs.pickle'
#為了加速計算,這個是經過處理的小樣本mnist手寫數字,這個資料可在[這裡](http://download.csdn.net/detail/whitesilence/9908115)下載
with open(pickle_file, 'rb') as f:
  save = pickle.load(f)
  train_dataset = save['train_dataset']
  train_labels = save['train_labels']
  valid_dataset = save['valid_dataset']
  valid_labels = save['valid_labels']
  test_dataset = save['test_dataset']
  test_labels = save['test_labels']
  del save  # hint to help gc free up memory
  print('Training set', train_dataset.shape, train_labels.shape)
  print('Validation set', valid_dataset.shape, valid_labels.shape)
  print('Test set', test_dataset.shape, test_labels.shape)

image_size = 28
num_labels = 10

def reformat(dataset, labels):
    dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)
    # Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...]
    labels = (np.arange(num_labels) == labels[:, None]).astype(np.float32)
    return dataset, labels

train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)

#建立一個7層網路
layer_sizes = [784, 1000, 500, 250, 250,250,10]
L = len(layer_sizes) - 1  # number of layers
num_examples = train_dataset.shape[0]
num_epochs = 100
starter_learning_rate = 0.02
decay_after = 15  # epoch after which to begin learning rate decay
batch_size = 120
num_iter = (num_examples/batch_size) * num_epochs  # number of loop iterations

x = tf.placeholder(tf.float32, shape=(None, layer_sizes[0]))
outputs = tf.placeholder(tf.float32)
testing=tf.placeholder(tf.bool)
learning_rate = tf.Variable(starter_learning_rate, trainable=False)

def bi(inits, size, name):
    return tf.Variable(inits * tf.ones([size]), name=name)

def wi(shape, name):
    return tf.Variable(tf.random_normal(shape, name=name)) / math.sqrt(shape[0])

shapes = zip(layer_sizes[:-1], layer_sizes[1:])  # shapes of linear layers

weights = {'W': [wi(s, "W") for s in shapes],  # feedforward weights
           # batch normalization parameter to shift the normalized value
           'beta': [bi(0.0, layer_sizes[l+1], "beta") for l in range(L)],
           # batch normalization parameter to scale the normalized value
           'gamma': [bi(1.0, layer_sizes[l+1], "beta") for l in range(L)]}

ewma = tf.train.ExponentialMovingAverage(decay=0.99)  # to calculate the moving averages of mean and variance
bn_assigns = []  # this list stores the updates to be made to average mean and variance

def batch_normalization(batch, mean=None, var=None):
    if mean is None or var is None:
        mean, var = tf.nn.moments(batch, axes=[0])
    return (batch - mean) / tf.sqrt(var + tf.constant(1e-10))

# average mean and variance of all layers
running_mean = [tf.Variable(tf.constant(0.0, shape=[l]), trainable=False) for l in layer_sizes[1:]]
running_var = [tf.Variable(tf.constant(1.0, shape=[l]), trainable=False) for l in layer_sizes[1:]]

def update_batch_normalization(batch, l):
    "batch normalize + update average mean and variance of layer l"
    mean, var = tf.nn.moments(batch, axes=[0])
    assign_mean = running_mean[l-1].assign(mean)
    assign_var = running_var[l-1].assign(var)
    bn_assigns.append(ewma.apply([running_mean[l-1], running_var[l-1]]))
    with tf.control_dependencies([assign_mean, assign_var]):
        return (batch - mean) / tf.sqrt(var + 1e-10)


def eval_batch_norm(batch,l):
    mean = ewma.average(running_mean[l - 1])
    var = ewma.average(running_var[l - 1])
    s = batch_normalization(batch, mean, var)
    return s

def net(x,weights,testing=False):
    d={'m': {}, 'v': {}, 'h': {}}
    h=x
    for l in range(1, L+1):
        print "Layer ", l, ": ", layer_sizes[l-1], " -> ", layer_sizes[l]
        d['h'][l-1]=h
        s= tf.matmul(d['h'][l-1], weights['W'][l-1])
        m, v = tf.nn.moments(s, axes=[0])
        if testing:
            s=eval_batch_norm(s,l)
        else:
            s=update_batch_normalization(s, l)
        s=weights['gamma'][l-1] * s + weights["beta"][l-1]
        if l == L:
            # use softmax activation in output layer
            h = tf.nn.softmax(s)
        else:
            h= tf.nn.relu(s)
        d['m'][l]=m
        d['v'][l]=v
    d['h'][l]=h
    return h,d

y,_=net(x,weights)

cost = -tf.reduce_mean(tf.reduce_sum(outputs*tf.log(y), 1))

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(outputs, 1))  # no of correct predictions

accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) * tf.constant(100.0)


train_step = tf.train.AdamOptimizer(learning_rate).minimize(cost)

# add the updates of batch normalization statistics to train_step
bn_updates = tf.group(*bn_assigns)
with tf.control_dependencies([train_step]):
    train_step = tf.group(bn_updates)

print "===  Starting Session ==="

sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)

i_iter = 0
print "=== Training ==="
#print "Initial Accuracy: ", sess.run(accuracy, feed_dict={x: test_dataset, outputs: test_labels, testing: True}), "%"

for i in tqdm(range(i_iter, num_iter)):
    #images, labels = mnist.train.next_batch(batch_size)
    start = (i * batch_size) % num_examples
    images=train_dataset[start:start+batch_size,:]
    labels=train_labels[start:start+batch_size,:]
    sess.run(train_step, feed_dict={x: images, outputs: labels})
    if (i > 1) and ((i+1) % (num_iter/num_epochs) == 0):#i>1且完成了一個epochs,即所有資料訓練完一遍
        epoch_n = i/(num_examples/batch_size)#第幾個epochs
        perm = np.arange(num_examples)
        np.random.shuffle(perm)
        train_dataset = train_dataset[perm]#所有訓練資料迭代完一次後,對訓練資料進行重排,避免下一次迭代時取的是同樣的資料
        train_labels = train_labels[perm]
        if (epoch_n+1) >= decay_after:
            # decay learning rate
            # learning_rate = starter_learning_rate * ((num_epochs - epoch_n) / (num_epochs - decay_after))
            ratio = 1.0 * (num_epochs - (epoch_n+1))  # epoch_n + 1 because learning rate is set for next epoch
            ratio = max(0, ratio / (num_epochs - decay_after))
            sess.run(learning_rate.assign(starter_learning_rate * ratio))
        print "Train Accuracy: ",sess.run(accuracy,feed_dict={x: images, outputs: labels})

print "Final Accuracy: ", sess.run(accuracy, feed_dict={x: test_dataset, outputs: test_labels, testing: True}), "%"

sess.close()



  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170

關於batch normal 的另一參考資料http://blog.csdn.net/intelligence1994/article/details/53888270
tensorflow常用函式介紹http://blog.csdn.net/wuqingshan2010/article/details/71056292

在看 ladder network(https://arxiv.org/pdf/1507.02672v2.pdf) 時初次遇到batch normalization(BN). 文中說BN能加速收斂等好處,但是並不理解,然後就在網上搜了些關於BN的資料。