1. 程式人生 > >How to Develop and Evaluate Naive Methods for Forecasting Household Electricity Consumption

How to Develop and Evaluate Naive Methods for Forecasting Household Electricity Consumption

Given the rise of smart electricity meters and the wide adoption of electricity generation technology like solar panels, there is a wealth of electricity usage data available.

This data represents a multivariate time series of power-related variables that in turn could be used to model and even forecast future electricity consumption.

In this tutorial, you will discover how to develop a test harness for the ‘household power consumption’ dataset and evaluate three naive forecast strategies that provide a baseline for more sophisticated algorithms.

After completing this tutorial, you will know:

  • How to load, prepare, and downsample the household power consumption dataset ready for developing models.
  • How to develop metrics, dataset split, and walk-forward validation elements for a robust test harness for evaluating forecasting models.
  • How to develop and evaluate and compare the performance a suite of naive persistence forecasting methods.

Let’s get started.

How to Develop and Evaluate Naive Forecast Methods for Forecasting Household Electricity Consumption

How to Develop and Evaluate Naive Forecast Methods for Forecasting Household Electricity Consumption
Photo by

Philippe Put, some rights reserved.

Tutorial Overview

This tutorial is divided into four parts; they are:

  1. Problem Description
  2. Load and Prepare Dataset
  3. Model Evaluation
  4. Naive Forecast Models

Problem Description

The ‘Household Power Consumption‘ dataset is a multivariate time series dataset that describes the electricity consumption for a single household over four years.

The data was collected between December 2006 and November 2010 and observations of power consumption within the household were collected every minute.

It is a multivariate series comprised of seven variables (besides the date and time); they are:

  • global_active_power: The total active power consumed by the household (kilowatts).
  • global_reactive_power: The total reactive power consumed by the household (kilowatts).
  • voltage: Average voltage (volts).
  • global_intensity: Average current intensity (amps).
  • sub_metering_1: Active energy for kitchen (watt-hours of active energy).
  • sub_metering_2: Active energy for laundry (watt-hours of active energy).
  • sub_metering_3: Active energy for climate control systems (watt-hours of active energy).

Active and reactive energy refer to the technical details of alternative current.

A fourth sub-metering variable can be created by subtracting the sum of three defined sub-metering variables from the total active energy as follows:

1 sub_metering_remainder = (global_active_power * 1000 / 60) - (sub_metering_1 + sub_metering_2 + sub_metering_3)

Load and Prepare Dataset

The dataset can be downloaded from the UCI Machine Learning repository as a single 20 megabyte .zip file:

Download the dataset and unzip it into your current working directory. You will now have the file “household_power_consumption.txt” that is about 127 megabytes in size and contains all of the observations.

We can use the read_csv() function to load the data and combine the first two columns into a single date-time column that we can use as an index.

12 # load all datadataset=read_csv('household_power_consumption.txt',sep=';',header=0,low_memory=False,infer_datetime_format=True,parse_dates={'datetime':[0,1]},index_col=['datetime'])

Next, we can mark all missing values indicated with a ‘?‘ character with a NaN value, which is a float.

This will allow us to work with the data as one array of floating point values rather than mixed types (less efficient.)

1234 # mark all missing valuesdataset.replace('?',nan,inplace=True)# make dataset numericdataset=dataset.astype('float32')

We also need to fill in the missing values now that they have been marked.

A very simple approach would be to copy the observation from the same time the day before. We can implement this in a function named fill_missing() that will take the NumPy array of the data and copy values from exactly 24 hours ago.

1234567 # fill missing values with a value at the same time one day agodef fill_missing(values):one_day=60*24forrow inrange(values.shape[0]):forcol inrange(values.shape[1]):ifisnan(values[row,col]):values[row,col]=values[row-one_day,col]

We can apply this function directly to the data within the DataFrame.

12 # fill missingfill_missing(dataset.values)

Now we can create a new column that contains the remainder of the sub-metering, using the calculation from the previous section.

123 # add a column for for the remainder of sub meteringvalues=dataset.valuesdataset['sub_metering_4']=(values[:,0]*1000/60)-(values[:,4]+values[:,5]+values[:,6])

We can now save the cleaned-up version of the dataset to a new file; in this case we will just change the file extension to .csv and save the dataset as ‘household_power_consumption.csv‘.

12 # save updated datasetdataset.to_csv('household_power_consumption.csv')

Tying all of this together, the complete example of loading, cleaning-up, and saving the dataset is listed below.

123456789101112131415161718192021222324252627 # load and clean-up datafrom numpy import nanfrom numpy import isnanfrom pandas import read_csvfrom pandas import to_numeric# fill missing values with a value at the same time one day agodef fill_missing(values):one_day=60*24forrow inrange(values.shape[0]):forcol inrange(values.shape[1]):ifisnan(values[row,col]):values[row,col]=values[row-one_day,col]# load all datadataset=read_csv('household_power_consumption.txt',sep=';',header=0,low_memory=False,infer_datetime_format=True,parse_dates={'datetime':[0,1]},index_col=['datetime'])# mark all missing valuesdataset.replace('?',nan,inplace=True)# make dataset numericdataset=dataset.astype('float32')# fill missingfill_missing(dataset.values)# add a column for for the remainder of sub meteringvalues=dataset.valuesdataset['sub_metering_4']=(values[:,0]*1000/60)-(values[:,4]+values[:,5]+values[:,6])# save updated datasetdataset.to_csv('household_power_consumption.csv')

Running the example creates the new file ‘household_power_consumption.csv‘ that we can use as the starting point for our modeling project.

Need help with Deep Learning for Time Series?

Take my free 7-day email crash course now (with sample code).

Click to sign-up and also get a free PDF Ebook version of the course.

Model Evaluation

In this section, we will consider how we can develop and evaluate predictive models for the household power dataset.

This section is divided into four parts; they are:

  1. Problem Framing
  2. Evaluation Metric
  3. Train and Test Sets
  4. Walk-Forward Validation

Problem Framing

There are many ways to harness and explore the household power consumption dataset.

In this tutorial, we will use the data to explore a very specific question; that is:

Given recent power consumption, what is the expected power consumption for the week ahead?

This requires that a predictive model forecast the total active power for each day over the next seven days.

Technically, this framing of the problem is referred to as a multi-step time series forecasting problem, given the multiple forecast steps. A model that makes use of multiple input variables may be referred to as a multivariate multi-step time series forecasting model.

A model of this type could be helpful within the household in planning expenditures. It could also be helpful on the supply side for planning electricity demand for a specific household.

This framing of the dataset also suggests that it would be useful to downsample the per-minute observations of power consumption to daily totals. This is not required, but makes sense, given that we are interested in total power per day.

We can achieve this easily using the resample() function on the pandas DataFrame. Calling this function with the argument ‘D‘ allows the loaded data indexed by date-time to be grouped by day (see all offset aliases). We can then calculate the sum of all observations for each day and create a new dataset of daily power consumption data for each of the eight variables.

The complete example is listed below.

123456789101112 # resample minute data to total for each dayfrom pandas import read_csv# load the new filedataset=read_csv('household_power_consumption.csv',header=0,infer_datetime_format=True,parse_dates=['datetime'],index_col=['datetime'])# resample data to dailydaily_groups=dataset.resample('D')daily_data=daily_groups.sum()# summarizeprint(daily_data.shape)print(daily_data.head())# savedaily_data.to_csv('household_power_consumption_days.csv')

Running the example creates a new daily total power consumption dataset and saves the result into a separate file named ‘household_power_consumption_days.csv‘.

We can use this as the dataset for fitting and evaluating predictive models for the chosen framing of the problem.

Evaluation Metric

A forecast will be comprised of seven values, one for each day of the week ahead.

It is common with multi-step forecasting problems to evaluate each forecasted time step separately. This is helpful for a few reasons:

  • To comment on the skill at a specific lead time (e.g. +1 day vs +3 days).
  • To contrast models based on their skills at different lead times (e.g. models good at +1 day vs models good at days +5).

The units of the total power are kilowatts and it would be useful to have an error metric that was also in the same units. Both Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) fit this bill, although RMSE is more commonly used and will be adopted in this tutorial. Unlike MAE, RMSE is more punishing of forecast errors.

The performance metric for this problem will be the RMSE for each lead time from day 1 to day 7.

As a short-cut, it may be useful to summarize the performance of a model using a single score in order to aide in model selection.

One possible score that could be used would be the RMSE across all forecast days.

The function evaluate_forecasts() below will implement this behavior and return the performance of a model based on multiple seven-day forecasts.

123456789101112131415161718 # evaluate one or more weekly forecasts against expected valuesdef evaluate_forecasts(actual,predicted):scores=list()# calculate an RMSE score for each dayforiinrange(actual.shape[1]):# calculate msemse=mean_squared_error(actual[:,i],predicted[:,i])# calculate rmsermse=sqrt(mse)# storescores.append(rmse)# calculate overall RMSEs=0forrow inrange(actual.shape[0]):forcol inrange(actual.shape[1]):s+=(actual[row,col]-predicted[row,col])**2score=sqrt(s/(actual.shape[0]*actual.shape[1]))returnscore,scores

Running the function will first return the overall RMSE regardless of day, then an array of RMSE scores for each day.

Train and Test Sets

We will use the first three years of data for training predictive models and the final year for evaluating models.

The data in a given dataset will be divided into standard weeks. These are weeks that begin on a Sunday and end on a Saturday.

This is a realistic and useful way for using the chosen framing of the model, where the power consumption for the week ahead can be predicted. It is also helpful with modeling, where models can be used to predict a specific day (e.g. Wednesday) or the entire sequence.

We will split the data into standard weeks, working backwards from the test dataset.

The final year of the data is in 2010 and the first Sunday for 2010 was January 3rd. The data ends in mid November 2010 and the closest final Saturday in the data is November 20th. This gives 46 weeks of test data.

The first and last rows of daily data for the test dataset are provided below for confirmation.

123 2010-01-03,2083.4539999999984,191.61000000000055,350992.12000000034,8703.600000000033,3842.0,4920.0,10074.0,15888.233355799992...2010-11-20,2197.006000000004,153.76800000000028,346475.9999999998,9320.20000000002,4367.0,2947.0,11433.0,17869.76663959999

The daily data starts in late 2006.

The first Sunday in the dataset is December 17th, which is the second row of data.

Organizing the data into standard weeks gives 159 full standard weeks for training a predictive model.

123 2006-12-17,3390.46,226.0059999999994,345725.32000000024,14398.59999999998,2033.0,4187.0,13341.0,36946.66673200004...2010-01-02,1309.2679999999998,199.54600000000016,352332.8399999997,5489.7999999999865,801.0,298.0,6425.0,14297.133406600002

The function split_dataset() below splits the daily data into train and test sets and organizes each into standard weeks.

Specific row offsets are used to split the data using knowledge of the dataset. The split datasets are then organized into weekly data using the NumPy split() function.