1. 程式人生 > >SSD框架訓練自己的資料集

SSD框架訓練自己的資料集

from __future__ import print_function
import caffe
from caffe.model_libs import *
from google.protobuf import text_format

import math
import os
import shutil
import stat
import subprocess
import sys

# Add extra layers on top of a "base" network (e.g. VGGNet or Inception).
def AddExtraLayers(net, use_batchnorm=True):
    use_relu 
= True # Add additional convolutional layers. from_layer = net.keys()[-1] # TODO(weiliu89): Construct the name using the last layer to avoid duplication. out_layer = "conv6_1" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 1, 0, 1) from_layer = out_layer out_layer
= "conv6_2" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 512, 3, 1, 2) for i in xrange(7, 9): from_layer = out_layer out_layer = "conv{}_1".format(i) ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1) from_layer
= out_layer out_layer = "conv{}_2".format(i) ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 1, 2) # Add global pooling layer. name = net.keys()[-1] net.pool6 = L.Pooling(net[name], pool=P.Pooling.AVE, global_pooling=True) return net ### Modify the following parameters accordingly ### # The directory which contains the caffe code. # We assume you are running the script at the CAFFE_ROOT. caffe_root = os.getcwd() # Set true if you want to start training right after generating all files. run_soon = True # Set true if you want to load from most recently saved snapshot. # Otherwise, we will load from the pretrain_model defined below. resume_training = True # If true, Remove old model files. remove_old_models = False # The database file for training data. Created by data/VOC0712/create_data.sh train_data = "examples/indoor/indoor_trainval_lmdb" # The database file for testing data. Created by data/VOC0712/create_data.sh test_data = "examples/indoor/indoor_test_lmdb" # Specify the batch sampler. resize_width = 300 resize_height = 300 resize = "{}x{}".format(resize_width, resize_height) batch_sampler = [ { 'sampler': { }, 'max_trials': 1, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.1, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.3, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.5, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.7, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.9, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'max_jaccard_overlap': 1.0, }, 'max_trials': 50, 'max_sample': 1, }, ] train_transform_param = { 'mirror': True, 'mean_value': [104, 117, 123], 'resize_param': { 'prob': 1, 'resize_mode': P.Resize.WARP, 'height': resize_height, 'width': resize_width, 'interp_mode': [ P.Resize.LINEAR, P.Resize.AREA, P.Resize.NEAREST, P.Resize.CUBIC, P.Resize.LANCZOS4, ], }, 'emit_constraint': { 'emit_type': caffe_pb2.EmitConstraint.CENTER, } } test_transform_param = { 'mean_value': [104, 117, 123], 'resize_param': { 'prob': 1, 'resize_mode': P.Resize.WARP, 'height': resize_height, 'width': resize_width, 'interp_mode': [P.Resize.LINEAR], }, } # If true, use batch norm for all newly added layers. # Currently only the non batch norm version has been tested. use_batchnorm = False # Use different initial learning rate. if use_batchnorm: base_lr = 0.0004 else: # A learning rate for batch_size = 1, num_gpus = 1. base_lr = 0.00004 # Modify the job name if you want. job_name = "SSD_{}".format(resize) # The name of the model. Modify it if you want. model_name = "VGG_VOC0712_{}".format(job_name) # Directory which stores the model .prototxt file. save_dir = "models/VGGNet/VOC0712/{}".format(job_name) # Directory which stores the snapshot of models. snapshot_dir = "models/VGGNet/VOC0712/{}".format(job_name) # Directory which stores the job script and log file. job_dir = "jobs/VGGNet/VOC0712/{}".format(job_name) # Directory which stores the detection results. output_result_dir = "{}/data/VOCdevkit/results/VOC2007/{}/Main".format(os.environ['HOME'], job_name) # model definition files. train_net_file = "{}/train.prototxt".format(save_dir) test_net_file = "{}/test.prototxt".format(save_dir) deploy_net_file = "{}/deploy.prototxt".format(save_dir) solver_file = "{}/solver.prototxt".format(save_dir) # snapshot prefix. snapshot_prefix = "{}/{}".format(snapshot_dir, model_name) # job script path. job_file = "{}/{}.sh".format(job_dir, model_name) # Stores the test image names and sizes. Created by data/VOC0712/create_list.sh name_size_file = "data/indoor/test_name_size.txt" # The pretrained model. We use the Fully convolutional reduced (atrous) VGGNet. pretrain_model = "models/VGGNet/VGG_ILSVRC_16_layers_fc_reduced.caffemodel" # Stores LabelMapItem. label_map_file = "data/indoor/labelmap_indoor.prototxt" # MultiBoxLoss parameters. num_classes = 2 share_location = True background_label_id=0 train_on_diff_gt = True normalization_mode = P.Loss.VALID code_type = P.PriorBox.CENTER_SIZE neg_pos_ratio = 3. loc_weight = (neg_pos_ratio + 1.) / 4. multibox_loss_param = { 'loc_loss_type': P.MultiBoxLoss.SMOOTH_L1, 'conf_loss_type': P.MultiBoxLoss.SOFTMAX, 'loc_weight': loc_weight, 'num_classes': num_classes, 'share_location': share_location, 'match_type': P.MultiBoxLoss.PER_PREDICTION, 'overlap_threshold': 0.5, 'use_prior_for_matching': True, 'background_label_id': background_label_id, 'use_difficult_gt': train_on_diff_gt, 'do_neg_mining': True, 'neg_pos_ratio': neg_pos_ratio, 'neg_overlap': 0.5, 'code_type': code_type, } loss_param = { 'normalization': normalization_mode, } # parameters for generating priors. # minimum dimension of input image min_dim = 300 # conv4_3 ==> 38 x 38 # fc7 ==> 19 x 19 # conv6_2 ==> 10 x 10 # conv7_2 ==> 5 x 5 # conv8_2 ==> 3 x 3 # pool6 ==> 1 x 1 mbox_source_layers = ['conv4_3', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'pool6'] # in percent % min_ratio = 20 max_ratio = 95 step = int(math.floor((max_ratio - min_ratio) / (len(mbox_source_layers) - 2))) min_sizes = [] max_sizes = [] for ratio in xrange(min_ratio, max_ratio + 1, step): min_sizes.append(min_dim * ratio / 100.) max_sizes.append(min_dim * (ratio + step) / 100.) min_sizes = [min_dim * 10 / 100.] + min_sizes max_sizes = [[]] + max_sizes aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3]] # L2 normalize conv4_3. normalizations = [20, -1, -1, -1, -1, -1] # variance used to encode/decode prior bboxes. if code_type == P.PriorBox.CENTER_SIZE: prior_variance = [0.1, 0.1, 0.2, 0.2] else: prior_variance = [0.1] flip = True clip = True # Solver parameters. # Defining which GPUs to use. gpus = "0" gpulist = gpus.split(",") num_gpus = len(gpulist) # Divide the mini-batch to different GPUs. batch_size = 4 accum_batch_size = 32 iter_size = accum_batch_size / batch_size solver_mode = P.Solver.CPU device_id = 0 batch_size_per_device = batch_size if num_gpus > 0: batch_size_per_device = int(math.ceil(float(batch_size) / num_gpus)) iter_size = int(math.ceil(float(accum_batch_size) / (batch_size_per_device * num_gpus))) solver_mode = P.Solver.GPU device_id = int(gpulist[0]) if normalization_mode == P.Loss.NONE: base_lr /= batch_size_per_device elif normalization_mode == P.Loss.VALID: base_lr *= 25. / loc_weight elif normalization_mode == P.Loss.FULL: # Roughly there are 2000 prior bboxes per image. # TODO(weiliu89): Estimate the exact # of priors. base_lr *= 2000. # Which layers to freeze (no backward) during training. freeze_layers = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2'] # Evaluate on whole test set. num_test_image = 800 test_batch_size = 1 test_iter = num_test_image / test_batch_size solver_param = { # Train parameters 'base_lr': base_lr, 'weight_decay': 0.0005, 'lr_policy': "step", 'stepsize': 40000, 'gamma': 0.1, 'momentum': 0.9, 'iter_size': iter_size, 'max_iter': 60000, 'snapshot': 40000, 'display': 10, 'average_loss': 10, 'type': "SGD", 'solver_mode': solver_mode, 'device_id': device_id, 'debug_info': False, 'snapshot_after_train': True, # Test parameters 'test_iter': [test_iter], 'test_interval': 10000, 'eval_type': "detection", 'ap_version': "11point", 'test_initialization': False, } # parameters for generating detection output. det_out_param = { 'num_classes': num_classes, 'share_location': share_location, 'background_label_id': background_label_id, 'nms_param': {'nms_threshold': 0.45, 'top_k': 400}, 'save_output_param': { 'output_directory': output_result_dir, 'output_name_prefix': "comp4_det_test_", 'output_format': "VOC", 'label_map_file': label_map_file, 'name_size_file': name_size_file, 'num_test_image': num_test_image, }, 'keep_top_k': 200, 'confidence_threshold': 0.01, 'code_type': code_type, } # parameters for evaluating detection results. det_eval_param = { 'num_classes': num_classes, 'background_label_id': background_label_id, 'overlap_threshold': 0.5, 'evaluate_difficult_gt': False, 'name_size_file': name_size_file, } ### Hopefully you don't need to change the following ### # Check file. check_if_exist(train_data) check_if_exist(test_data) check_if_exist(label_map_file) check_if_exist(pretrain_model) make_if_not_exist(save_dir) make_if_not_exist(job_dir) make_if_not_exist(snapshot_dir) # Create train net. net = caffe.NetSpec() net.data, net.label = CreateAnnotatedDataLayer(train_data, batch_size=batch_size_per_device, train=True, output_label=True, label_map_file=label_map_file, transform_param=train_transform_param, batch_sampler=batch_sampler) VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True, dropout=False, freeze_layers=freeze_layers) AddExtraLayers(net, use_batchnorm) mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers, use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes, aspect_ratios=aspect_ratios, normalizations=normalizations, num_classes=num_classes, share_location=share_location, flip=flip, clip=clip, prior_variance=prior_variance, kernel_size=3, pad=1) # Create the MultiBoxLossLayer. name = "mbox_loss" mbox_layers.append(net.label) net[name] = L.MultiBoxLoss(*mbox_layers, multibox_loss_param=multibox_loss_param, loss_param=loss_param, include=dict(phase=caffe_pb2.Phase.Value('TRAIN')), propagate_down=[True, True, False, False]) with open(train_net_file, 'w') as f: print('name: "{}_train"'.format(model_name), file=f) print(net.to_proto(), file=f) shutil.copy(train_net_file, job_dir) # Create test net. net = caffe.NetSpec() net.data, net.label = CreateAnnotatedDataLayer(test_data, batch_size=test_batch_size, train=False, output_label=True, label_map_file=label_map_file, transform_param=test_transform_param) VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True, dropout=False, freeze_layers=freeze_layers) AddExtraLayers(net, use_batchnorm) mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers, use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes, aspect_ratios=aspect_ratios, normalizations=normalizations, num_classes=num_classes, share_location=share_location, flip=flip, clip=clip, prior_variance=prior_variance, kernel_size=3, pad=1) conf_name = "mbox_conf" if multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.SOFTMAX: reshape_name = "{}_reshape".format(conf_name) net[reshape_name] = L.Reshape(net[conf_name], shape=dict(dim=[0, -1, num_classes])) softmax_name = "{}_softmax".format(conf_name) net[softmax_name] = L.Softmax(net[reshape_name], axis=2) flatten_name = "{}_flatten".format(conf_name) net[flatten_name] = L.Flatten(net[softmax_name], axis=1) mbox_layers[1] = net[flatten_name] elif multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.LOGISTIC: sigmoid_name = "{}_sigmoid".format(conf_name) net[sigmoid_name] = L.Sigmoid(net[conf_name]) mbox_layers[1] = net[sigmoid_name] net.detection_out = L.DetectionOutput(*mbox_layers, detection_output_param=det_out_param, include=dict(phase=caffe_pb2.Phase.Value('TEST'))) net.detection_eval = L.DetectionEvaluate(net.detection_out, net.label, detection_evaluate_param=det_eval_param, include=dict(phase=caffe_pb2.Phase.Value('TEST'))) with open(test_net_file, 'w') as f: print('name: "{}_test"'.format(model_name), file=f) print(net.to_proto(), file=f) shutil.copy(test_net_file, job_dir) # Create deploy net. # Remove the first and last layer from test net. deploy_net = net with open(deploy_net_file, 'w') as f: net_param = deploy_net.to_proto() # Remove the first (AnnotatedData) and last (DetectionEvaluate) layer from test net. del net_param.layer[0] del net_param.layer[-1] net_param.name = '{}_deploy'.format(model_name) net_param.input.extend(['data']) net_param.input_shape.extend([ caffe_pb2.BlobShape(dim=[1, 3, resize_height, resize_width])]) print(net_param, file=f) shutil.copy(deploy_net_file, job_dir) # Create solver. solver = caffe_pb2.SolverParameter( train_net=train_net_file, test_net=[test_net_file], snapshot_prefix=snapshot_prefix, **solver_param) with open(solver_file, 'w') as f: print(solver, file=f) shutil.copy(solver_file, job_dir) max_iter = 0 # Find most recent snapshot. for file in os.listdir(snapshot_dir): if file.endswith(".solverstate"): basename = os.path.splitext(file)[0] iter = int(basename.split("{}_iter_".format(model_name))[1]) if iter > max_iter: max_iter = iter train_src_param = '--weights="{}" \\\n'.format(pretrain_model) if resume_training: if max_iter > 0: train_src_param = '--snapshot="{}_iter_{}.solverstate" \\\n'.format(snapshot_prefix, max_iter) if remove_old_models: # Remove any snapshots smaller than max_iter. for file in os.listdir(snapshot_dir): if file.endswith(".solverstate"): basename = os.path.splitext(file)[0] iter = int(basename.split("{}_iter_".format(model_name))[1]) if max_iter > iter: os.remove("{}/{}".format(snapshot_dir, file)) if file.endswith(".caffemodel"): basename = os.path.splitext(file)[0] iter = int(basename.split("{}_iter_".format(model_name))[1]) if max_iter > iter: os.remove("{}/{}".format(snapshot_dir, file)) # Create job file. with open(job_file, 'w') as f: f.write('cd {}\n'.format(caffe_root)) f.write('./build/tools/caffe train \\\n') f.write('--solver="{}" \\\n'.format(solver_file)) f.write(train_src_param) if solver_param['solver_mode'] == P.Solver.GPU: f.write('--gpu {} 2>&1 | tee {}/{}.log\n'.format(gpus, job_dir, model_name)) else: f.write('2>&1 | tee {}/{}.log\n'.format(job_dir, model_name)) # Copy the python script to job_dir. py_file = os.path.abspath(__file__) shutil.copy(py_file, job_dir) # Run the job. os.chmod(job_file, stat.S_IRWXU) if run_soon: subprocess.call(job_file, shell=True)