1. 程式人生 > >Comparable和Comparator原始碼分析與對比

Comparable和Comparator原始碼分析與對比

Comparable使用

 Comparable只是一個簡單的介面,

public interface Comparable<T> {
    public int compareTo(T o);
}

使用如下:

public class Person implements Comparable<Person> {

    int age;
    String name;

    public Person(int age, String name) {
        this.age = age;
        this.name = name;
    }

    @Override
    public
int compareTo(Person o) { return this.age - o.age; } @Override public String toString() { return "age=" + age + ", name='" + name; } public static void main(String[] args) { List<Person> list = Arrays.asList(new Person[]{new Person(23, "Merry"), new
Person(18, "Jack"), new Person(25, "Lx")}); Collections.sort(list); System.out.println(list.toString()); } }

Comparator原始碼如下

 Comparator在Java8中是一個函式式介面,除去原始的jdk7中保留的equalscompare方法,還添加了部分針對java8函數語言程式設計新增的defaultstatic

方法。


@FunctionalInterface
public interface Comparator<T> {

    int compare(T o1, T o2);

    boolean equals(Object obj);

    /**
     * 返回一個倒序比較器
     */
    default Comparator<T> reversed() {
        return Collections.reverseOrder(this);
    }

    /**
     * 返回二次比較器
     */
    default Comparator<T> thenComparing(Comparator<? super T> other) {
        Objects.requireNonNull(other);
        return (Comparator<T> & Serializable) (c1, c2) -> {
            int res = compare(c1, c2);
            return (res != 0) ? res : other.compare(c1, c2);
        };
    }

    /**
     * 根據給定的關鍵字抽取函式返回二次比較器
     */
    default <U> Comparator<T> thenComparing(
            Function<? super T, ? extends U> keyExtractor,
            Comparator<? super U> keyComparator)
    {
        return thenComparing(comparing(keyExtractor, keyComparator));
    }


    default <U extends Comparable<? super U>> Comparator<T> thenComparing(
            Function<? super T, ? extends U> keyExtractor)
    {
        return thenComparing(comparing(keyExtractor));
    }

    /**
     * 根據整形關鍵字抽取起返回二次比較器
     *
     */
    default Comparator<T> thenComparingInt(ToIntFunction<? super T> keyExtractor) {
        return thenComparing(comparingInt(keyExtractor));
    }

    /**
     * Returns a lexicographic-order comparator with a function that
     * extracts a {@code long} sort key.
     */
    default Comparator<T> thenComparingLong(ToLongFunction<? super T> keyExtractor) {
        return thenComparing(comparingLong(keyExtractor));
    }


    default Comparator<T> thenComparingDouble(ToDoubleFunction<? super T> keyExtractor) {
        return thenComparing(comparingDouble(keyExtractor));
    }


    public static <T extends Comparable<? super T>> Comparator<T> reverseOrder() {
        return Collections.reverseOrder();
    }


    @SuppressWarnings("unchecked")
    public static <T extends Comparable<? super T>> Comparator<T> naturalOrder() {
        return (Comparator<T>) Comparators.NaturalOrderComparator.INSTANCE;
    }

    /**
     * 返回非空的比較器
     */
    public static <T> Comparator<T> nullsFirst(Comparator<? super T> comparator) {
        return new Comparators.NullComparator<>(true, comparator);
    }


    public static <T> Comparator<T> nullsLast(Comparator<? super T> comparator) {
        return new Comparators.NullComparator<>(false, comparator);
    }

    /**
     * Accepts a function that extracts a sort key from a type {@code T}, and
     * returns a {@code Comparator<T>} that compares by that sort key using
     */
    public static <T, U> Comparator<T> comparing(
            Function<? super T, ? extends U> keyExtractor,
            Comparator<? super U> keyComparator)
    {
        Objects.requireNonNull(keyExtractor);
        Objects.requireNonNull(keyComparator);
        return (Comparator<T> & Serializable)
            (c1, c2) -> keyComparator.compare(keyExtractor.apply(c1),
                                              keyExtractor.apply(c2));
    }


    public static <T, U extends Comparable<? super U>> Comparator<T> comparing(
            Function<? super T, ? extends U> keyExtractor)
    {
        Objects.requireNonNull(keyExtractor);
        return (Comparator<T> & Serializable)
            (c1, c2) -> keyExtractor.apply(c1).compareTo(keyExtractor.apply(c2));
    }


    public static <T> Comparator<T> comparingInt(ToIntFunction<? super T> keyExtractor) {
        Objects.requireNonNull(keyExtractor);
        return (Comparator<T> & Serializable)
            (c1, c2) -> Integer.compare(keyExtractor.applyAsInt(c1), keyExtractor.applyAsInt(c2));
    }


    public static <T> Comparator<T> comparingLong(ToLongFunction<? super T> keyExtractor) {
        Objects.requireNonNull(keyExtractor);
        return (Comparator<T> & Serializable)
            (c1, c2) -> Long.compare(keyExtractor.applyAsLong(c1), keyExtractor.applyAsLong(c2));
    }


    public static<T> Comparator<T> comparingDouble(ToDoubleFunction<? super T> keyExtractor) {
        Objects.requireNonNull(keyExtractor);
        return (Comparator<T> & Serializable)
            (c1, c2) -> Double.compare(keyExtractor.applyAsDouble(c1), keyExtractor.applyAsDouble(c2));
    }
}

Comparator使用方式如下

 對一個學生列表,實現按照年齡順序,成績倒序的排序,實現如下:

public class StudentComparator implements Comparator<Student> {

    @Override
    public int compare(Student o1, Student o2) {
        return o1.age - o2.age;
    }

}
@Data
public class Student {

    String name;
    int age;
    double score;

    public Student(String name, int age, float score) {
        this.name = name;
        this.age = age;
        this.score = score;
    }

    @Override
    public String toString() {
        return "Student{" +
                "name='" + name + '\'' +
                ", age=" + age +
                ", score=" + score +
                '}'+"\n";
    }

    public static void main(String[] args) {

        List<Student> list = Arrays.asList(new Student[]{new Student("lx", 27, 99.5f),
                new Student("xs", 26, 89.5f),
                new Student("mj", 25, 92.5f),
                new Student("lx2", 27, 79.5f),
                new Student("xs2", 26, 79.5f),
                new Student("mj2", 25, 62.5f)}

        );
        //二次排序採用傳入Lamda表示式的方式
        Collections.sort(list, new StudentComparator().thenComparing((s1,s2)->(int)(s2.score-s2.score)));
        System.out.println(list.toString());

    }
}

執行結果如下:

[Student{name='mj', age=25, score=92.5}
, Student{name='mj2', age=25, score=62.5}
, Student{name='xs', age=26, score=89.5}
, Student{name='xs2', age=26, score=79.5}
, Student{name='lx', age=27, score=99.5}
, Student{name='lx2', age=27, score=79.5}
]

Comparator與Comparable的比較

  • 相同點

    1. 都是用於比較兩個物件“順序”的介面
    2. 都可以使用Collections.sort()方法來對物件集合進行排序
  • 不同點

    1. Comparable位於java.lang包下,而Comparator則位於java.util包下
    2. Comparable 是在集合內部定義的方法實現的排序,Comparator 是在集合外部實現的排序
    3. 使用Comparable介面來實現物件之間的比較時,可以使這個型別(設為A)實現Comparable介面,並可以使用Collections.sort()方法來對A型別的List進行排序,之後可以通過a1.comparaTo(a2)來比較兩個物件;
      當使用Comparator介面來實現物件之間的比較時,只需要建立一個實現Comparator介面的比較器(設為AComparator),並將其傳給Collections.sort()方法即可對A型別的List進行排序,之後也可以通過呼叫比較器AComparator.compare(a1, a2)來比較兩個物件。例如上面的二次排序問題;
      可以說一個是自己完成比較,一個是外部程式實現比較的差別而已。用Comparator 是策略模式(strategy design pattern),就是不改變物件自身,而用一個策略物件(strategy object)來改變它的行為。