1. 程式人生 > >Tensorflow實戰(五)經典卷積神經網路之實現VGGNet

Tensorflow實戰(五)經典卷積神經網路之實現VGGNet

演算法原理:

      VGGNet探索了卷積神經網路深度與其效能之間的關係,通過反覆的堆疊3*3的小型卷積核和2*2的最大池化層,VGGNet成功的構建了16-19層深的卷積神經網路。。

       VGGNet擁有5段卷積,每一段內有2-3個卷積層,同時尾部會連線一個最大池化

實驗程式碼:

# -*- coding: utf-8 -*-
"""
Created on Tue Jan 23 18:57:20 2018

@author: Administrator
"""

from datetime import datetime
import math
import time
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
batch_size=32
num_batches=100

def conv_op(input_op,name,kh,kw,n_out,dh,dw,p):
    n_in=input_op.get_shape()[-1].value
    
    with tf.name_scope(name) as scope:
        kernel=tf.get_variable(scope+"w",shape=[kh,kw,n_in,n_out],dtype=tf.float32,
                               initializer=tf.contrib.layers.xavier_initializer_conv2d())
        conv=tf.nn.conv2d(input_op,kernel,(1,dh,dw,1),padding='SAME')
        biases_init_val=tf.constant(0.0,shape=[n_out],dtype=tf.float32)
        biases=tf.Variable(biases_init_val,trainable=True,name='b')
        z=tf.nn.bias_add(conv,biases)
        activtion=tf.nn.relu(z,name=scope)
        p+=[kernel,biases]
        return activtion
    #全連線層
def fc_op(input_op,name,n_out,p):
    n_in=input_op.get_shape()[-1].value

    with tf.name_scope(name) as scope:
        kernel=tf.get_variable(scope+"w",shape=[n_in,n_out],dtype=tf.float32,
                               initializer=tf.contrib.layers.xavier_initializer_conv2d())
       
        biases_init_val=tf.constant(0.1,shape=[n_out],dtype=tf.float32)
        biases=tf.Variable(biases_init_val,trainable=True,name='b')
      
        activtion=tf.nn.relu_layer(input_op,kernel,biases,name=scope)
        p+=[kernel,biases]
        return activtion    
def mpool_op(inout_op,name,kh,kw,dh,dw):
    return tf.nn.max_pool(inout_op,ksize=[1,kh,kw,1],
                          strides=[1,dh,dw,1],padding='SAME',name=name)
def interfence_op(input_op,keep_prob):
    p=[]
    
    conv1_1=conv_op(input_op,name="conv1_1",kh=3,kw=3,n_out=64,dh=1,dw=1,p=p)
    conv1_2=conv_op(conv1_1,name="conv1_2",kh=3,kw=3,n_out=64,dh=1,dw=1,p=p)
    pool1=mpool_op(conv1_2,name="pool1",kh=2,kw=2,dh=2,dw=2)
    
    conv2_1=conv_op(pool1,name="conv2_1",kh=3,kw=3,n_out=128,dh=1,dw=1,p=p)
    conv2_2=conv_op(conv2_1,name="conv2_2",kh=3,kw=3,n_out=128,dh=1,dw=1,p=p)
    pool2=mpool_op(conv2_2,name="pool2",kh=2,kw=2,dh=2,dw=2)

    conv3_1=conv_op(pool2,name="conv3_1",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)
    conv3_2=conv_op(conv3_1,name="conv3_2",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)
    conv3_3=conv_op(conv3_2,name="conv3_3",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)
    pool3=mpool_op(conv3_3,name="pool3",kh=2,kw=2,dh=2,dw=2)

    conv4_1=conv_op(pool3,name="conv4_1",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
    conv4_2=conv_op(conv4_1,name="conv4_2",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
    conv4_3=conv_op(conv4_2,name="conv4_3",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
    pool4=mpool_op(conv4_3,name="pool4",kh=2,kw=2,dh=2,dw=2)
        
    conv5_1=conv_op(pool4,name="conv5_1",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
    conv5_2=conv_op(conv5_1,name="conv5_2",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
    conv5_3=conv_op(conv5_2,name="conv5_3",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
    pool5=mpool_op(conv5_3,name="pool5",kh=2,kw=2,dh=2,dw=2)    
    
    shp=pool5.get_shape()
    flattened_shape=shp[1].value*shp[2].value*shp[3].value
    resh1=tf.reshape(pool5,[-1,flattened_shape],name="resh1")
    
    
    #全連線層
    fc6=fc_op(resh1,name='fc6',n_out=4096,p=p)
    fc6_drop=tf.nn.dropout(fc6,keep_prob,name='fc6_drop')
    
    #全連線層
    fc7=fc_op(fc6_drop,name='fc7',n_out=4096,p=p)
    fc7_drop=tf.nn.dropout(fc7,keep_prob,name='fc7_drop')
    
    fc8=fc_op(fc7_drop,name='fc8',n_out=1000,p=p)
    softmax=tf.nn.softmax(fc8)
    predictions=tf.argmax(softmax,1)
    return predictions,softmax,fc8,p

def time_tensorflow_run(session,target,feed,info_string):
        num_steps_brun_in=10
        total_duration=0.0
        total_duration_squared=0.0
        for i in range(num_batches+num_steps_brun_in):
            start_time=time.time()
            _=session.run(target,feed_dict=feed)
            duration=time.time()-start_time
            if i>=num_steps_brun_in:
                if not i%10:
                    print('%s:step %d,duration=%3f'%(datetime.now(),
                                                     i-num_steps_brun_in,
                                                     duration))
                total_duration+=duration
                total_duration_squared+=duration*duration
        mn=total_duration/num_batches
        vr=total_duration_squared/num_batches-mn*mn
        sd=math.sqrt(vr)
        print('%s: %s across %d steps,%.3f+-%.3f sec/batch'%(datetime.now(),
                                                                     info_string,
                                                                     num_batches,
                                                                     mn,
                                                                     sd))
def run_benchmark():
        with tf.Graph().as_default():
            image_size=224
            images=tf.Variable(tf.random_normal([batch_size,image_size,image_size,3],
                                                dtype=tf.float32,stddev=1e-1))
            keep_prob=tf.placeholder(tf.float32)
            predictions,softmax,fc8,p=interfence_op(images,keep_prob)
            init=tf.global_variables_initializer()
            sess=tf.Session()
            sess.run(init)
            time_tensorflow_run(sess,predictions,{keep_prob:1.0},"forward")
            objective=tf.nn.l2_loss(fc8)
            grad=tf.gradients(objective,p)
            time_tensorflow_run(sess,grad,"forward-backward")            
    
run_benchmark()    
    
    
    
    
    
    
    


遇到的錯誤:

 Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
Found device 0 with properties: 
name: GeForce 820M major: 2 minor: 1 memoryClockRate(GHz): 1.25
pciBusID: 0000:01:00.0
totalMemory: 2.00GiB freeMemory: 1.94GiB
Ignoring visible gpu device (device: 0, name: GeForce 820M, pci bus id: 0000:01:00.0, compute capability: 2.1) with Cuda compute capability 2.1. The minimum required Cuda capability is 3.0.