1. 程式人生 > >【劍指Offer學習】【面試題39:二叉樹的深度】

【劍指Offer學習】【面試題39:二叉樹的深度】

題目一:輸入一棵二叉樹的根結點,求該樹的深度。從根結點到葉子點依次經過的結點(含根、葉結點)形成樹的一條路徑,最長路徑的長度為樹的深度。

二叉樹的結點定義

private static class BinaryTreeNode {
    int val;
    BinaryTreeNode left;
    BinaryTreeNode right;

    public BinaryTreeNode() {
    }

    public BinaryTreeNode(int val) {
        this.val = val;
    }
}

解題思路

  如果一棵樹只有一個結點,它的深度為。 如果根結點只有左子樹而沒有右子樹, 那麼樹的深度應該是其左子樹的深度加1,同樣如果根結點只有右子樹而沒有左子樹,那麼樹的深度應該是其右子樹的深度加1. 如果既有右子樹又有左子樹, 那該樹的深度就是其左、右子樹深度的較大值再加1 . 比如在圖6.1 的二叉樹中,根結點為1 的樹有左右兩個子樹,其左右子樹的根結點分別為結點2和3。根結點為2 的左子樹的深度為3 , 而根結點為3 的右子樹的深度為2,因此根結點為1的樹的深度就是4 。
  這個思路用遞迴的方法很容易實現, 只儒對遍歷的程式碼稍作修改即可。

這裡寫圖片描述

程式碼實現

public static int
treeDepth(BinaryTreeNode root) { if (root == null) { return 0; } int left = treeDepth(root.left); int right = treeDepth(root.right); return left > right ? (left + 1) : (right + 1); }

題目二:輸入一棵二叉樹的根結點,判斷該樹是不是平衡二叉樹。如果某二叉樹中任意結點的左右子樹的深度相差不超過1 ,那麼它就是一棵平衡二叉樹。

解題思路

解法一:需要重蟹遍歷結點多次的解法


  在遍歷樹的每個結點的時候,呼叫函式treeDepth得到它的左右子樹的深度。如果每個結點的左右子樹的深度相差都不超過1 ,按照定義它就是一棵平衡的二叉樹。

public static boolean isBalanced(BinaryTreeNode root) {
    if (root == null) {
        return true;
    }

    int left = treeDepth(root.left);
    int right = treeDepth(root.right);
    int diff = left - right;
    if (diff > 1 || diff < -1) {
        return false;
    }

    return isBalanced(root.left) && isBalanced(root.right);
}

解法二:每個結點只遍歷一次的解法
  用後序遍歷的方式遍歷二叉樹的每一個結點,在遍歷到一個結點之前我們就已經遍歷了它的左右子樹。只要在遍歷每個結點的時候記錄它的深度(某一結點的深度等於它到葉節點的路徑的長度),我們就可以一邊遍歷一邊判斷每個結點是不是平衡的。

/**
 * 判斷是否是平衡二叉樹,第二種解法
 *
 * @param root
 * @return
 */
public static boolean isBalanced2(BinaryTreeNode root) {
    int[] depth = new int[1];
    return isBalancedHelper(root, depth);
}

public static boolean isBalancedHelper(BinaryTreeNode root, int[] depth) {
    if (root == null) {
        depth[0] = 0;
        return true;
    }

    int[] left = new int[1];
    int[] right = new int[1];

    if (isBalancedHelper(root.left, left) && isBalancedHelper(root.right, right)) {
        int diff = left[0] - right[0];
        if (diff >= -1 && diff <= 1) {
            depth[0] = 1 + (left[0] > right[0] ? left[0] : right[0]);
            return true;
        }
    }

    return false;
}

完整程式碼

public class Test39 {

    private static class BinaryTreeNode {
        int val;
        BinaryTreeNode left;
        BinaryTreeNode right;

        public BinaryTreeNode() {
        }

        public BinaryTreeNode(int val) {
            this.val = val;
        }
    }

    public static int treeDepth(BinaryTreeNode root) {
        if (root == null) {
            return 0;
        }

        int left = treeDepth(root.left);
        int right = treeDepth(root.right);

        return left > right ? (left + 1) : (right + 1);
    }

    /**
     * 判斷是否是平衡二叉樹,第一種解法
     *
     * @param root
     * @return
     */
    public static boolean isBalanced(BinaryTreeNode root) {
        if (root == null) {
            return true;
        }

        int left = treeDepth(root.left);
        int right = treeDepth(root.right);
        int diff = left - right;
        if (diff > 1 || diff < -1) {
            return false;
        }

        return isBalanced(root.left) && isBalanced(root.right);
    }


    /**
     * 判斷是否是平衡二叉樹,第二種解法
     *
     * @param root
     * @return
     */
    public static boolean isBalanced2(BinaryTreeNode root) {
        int[] depth = new int[1];
        return isBalancedHelper(root, depth);
    }

    public static boolean isBalancedHelper(BinaryTreeNode root, int[] depth) {
        if (root == null) {
            depth[0] = 0;
            return true;
        }

        int[] left = new int[1];
        int[] right = new int[1];

        if (isBalancedHelper(root.left, left) && isBalancedHelper(root.right, right)) {
            int diff = left[0] - right[0];
            if (diff >= -1 && diff <= 1) {
                depth[0] = 1 + (left[0] > right[0] ? left[0] : right[0]);
                return true;
            }
        }

        return false;
    }

    public static void main(String[] args) {
        test1();
        test2();
        test3();
        test4();
    }


    // 完全二叉樹
    //             1
    //         /      \
    //        2        3
    //       /\       / \
    //      4  5     6   7
    private static void test1() {
        BinaryTreeNode n1 = new BinaryTreeNode(1);
        BinaryTreeNode n2 = new BinaryTreeNode(1);
        BinaryTreeNode n3 = new BinaryTreeNode(1);
        BinaryTreeNode n4 = new BinaryTreeNode(1);
        BinaryTreeNode n5 = new BinaryTreeNode(1);
        BinaryTreeNode n6 = new BinaryTreeNode(1);
        BinaryTreeNode n7 = new BinaryTreeNode(1);

        n1.left = n2;
        n1.right = n3;
        n2.left = n4;
        n2.right = n5;
        n3.left = n6;
        n3.right = n7;

        System.out.println(isBalanced(n1));
        System.out.println(isBalanced2(n1));
        System.out.println("----------------");

    }

    // 不是完全二叉樹,但是平衡二叉樹
    //             1
    //         /      \
    //        2        3
    //       /\         \
    //      4  5         6
    //        /
    //       7
    private static void test2() {
        BinaryTreeNode n1 = new BinaryTreeNode(1);
        BinaryTreeNode n2 = new BinaryTreeNode(1);
        BinaryTreeNode n3 = new BinaryTreeNode(1);
        BinaryTreeNode n4 = new BinaryTreeNode(1);
        BinaryTreeNode n5 = new BinaryTreeNode(1);
        BinaryTreeNode n6 = new BinaryTreeNode(1);
        BinaryTreeNode n7 = new BinaryTreeNode(1);

        n1.left = n2;
        n1.right = n3;
        n2.left = n4;
        n2.right = n5;
        n5.left = n7;
        n3.right = n6;


        System.out.println(isBalanced(n1));
        System.out.println(isBalanced2(n1));
        System.out.println("----------------");
    }

    // 不是平衡二叉樹
    //             1
    //         /      \
    //        2        3
    //       /\
    //      4  5
    //        /
    //       7
    private static void test3() {
        BinaryTreeNode n1 = new BinaryTreeNode(1);
        BinaryTreeNode n2 = new BinaryTreeNode(1);
        BinaryTreeNode n3 = new BinaryTreeNode(1);
        BinaryTreeNode n4 = new BinaryTreeNode(1);
        BinaryTreeNode n5 = new BinaryTreeNode(1);
        BinaryTreeNode n6 = new BinaryTreeNode(1);
        BinaryTreeNode n7 = new BinaryTreeNode(1);

        n1.left = n2;
        n1.right = n3;
        n2.left = n4;
        n2.right = n5;
        n5.left = n7;

        System.out.println(isBalanced(n1));
        System.out.println(isBalanced2(n1));
        System.out.println("----------------");
    }

    //               1
    //              /
    //             2
    //            /
    //           3
    //          /
    //         4
    //        /
    //       5
    private static void test4() {
        BinaryTreeNode n1 = new BinaryTreeNode(1);
        BinaryTreeNode n2 = new BinaryTreeNode(1);
        BinaryTreeNode n3 = new BinaryTreeNode(1);
        BinaryTreeNode n4 = new BinaryTreeNode(1);
        BinaryTreeNode n5 = new BinaryTreeNode(1);
        BinaryTreeNode n6 = new BinaryTreeNode(1);
        BinaryTreeNode n7 = new BinaryTreeNode(1);

        n1.left = n2;
        n2.left = n3;
        n3.left = n4;
        n4.left = n5;


        System.out.println(isBalanced(n1));
        System.out.println(isBalanced2(n1));
        System.out.println("----------------");
    }

    // 1
    //  \
    //   2
    //    \
    //     3
    //      \
    //       4
    //        \
    //         5
    private static void test5() {
        BinaryTreeNode n1 = new BinaryTreeNode(1);
        BinaryTreeNode n2 = new BinaryTreeNode(1);
        BinaryTreeNode n3 = new BinaryTreeNode(1);
        BinaryTreeNode n4 = new BinaryTreeNode(1);
        BinaryTreeNode n5 = new BinaryTreeNode(1);
        BinaryTreeNode n6 = new BinaryTreeNode(1);
        BinaryTreeNode n7 = new BinaryTreeNode(1);

        n1.right = n2;
        n2.right = n3;
        n3.right = n4;
        n4.right = n5;


        System.out.println(isBalanced(n1));
        System.out.println(isBalanced2(n1));
        System.out.println("----------------");
    }
}

執行結果

這裡寫圖片描述